The conductor of an abelian variety

Armand Brumer; Kenneth Kramer

Compositio Mathematica (1994)

  • Volume: 92, Issue: 2, page 227-248
  • ISSN: 0010-437X

How to cite

top

Brumer, Armand, and Kramer, Kenneth. "The conductor of an abelian variety." Compositio Mathematica 92.2 (1994): 227-248. <http://eudml.org/doc/90305>.

@article{Brumer1994,
author = {Brumer, Armand, Kramer, Kenneth},
journal = {Compositio Mathematica},
keywords = {abelian variety over a -adic field; bounds for the conductor},
language = {eng},
number = {2},
pages = {227-248},
publisher = {Kluwer Academic Publishers},
title = {The conductor of an abelian variety},
url = {http://eudml.org/doc/90305},
volume = {92},
year = {1994},
}

TY - JOUR
AU - Brumer, Armand
AU - Kramer, Kenneth
TI - The conductor of an abelian variety
JO - Compositio Mathematica
PY - 1994
PB - Kluwer Academic Publishers
VL - 92
IS - 2
SP - 227
EP - 248
LA - eng
KW - abelian variety over a -adic field; bounds for the conductor
UR - http://eudml.org/doc/90305
ER -

References

top
  1. 1 A. Brumer: The rank of J0(N). Submitted to Astérisque. Zbl0851.11035MR1330927
  2. 2 C.W. Curtis and I. Reiner: Methods of Representation Theory. 2 vols. John Wiley, New York, 1987. Zbl0616.20001MR892316
  3. 3 J.-M. Fontaine: Groupes de ramification et représentation d'Artin. Ann. Sci. E.N.S. (4) 4 (1971) 337-392. Zbl0232.12006MR289458
  4. 4 A. Grothendieck: Modèles de Néron et monodromie. SGA 7, Exposé IX, Lecture Notes in Math. 288, 313-523, Springer-Verlag: Berlin, New York, 1970. Zbl0248.14006MR354656
  5. 5 B. Huppert: Endliche Gruppen I. Springer-Verlag: Berlin, New York, 1967. Zbl0217.07201MR224703
  6. 6 H W. Lenstra, F.Oort: Abelian varieties having purely additive reduction. J. Pure and Applied Algebra36 (1985) 281-298. Zbl0557.14022MR790619
  7. 7 P. Lockhart, M.I. Rosen, J. Silverman: An upper bound for the conductor of an abelian variety. Journal of Algebraic Geometry2 (1993) 569-601. Zbl0816.14021MR1227469
  8. 8 D. Lorenzini: Groups of components of Néron models of Jacobians. Compositio Math.73 (1990) 145-160. Zbl0737.14008MR1046735
  9. 9 J. Milne: The arithmetic of abelian varieties. Inv. Math.17 (1972) 177-190. Zbl0249.14012MR330174
  10. 10 F. Oort: Good and stable reduction of abelian varieties. Manuscripta Math.11 (1974) 171-197. Zbl0266.14016MR347834
  11. 11 O. Ore: Abriss einer arithmetischen theorie der Galoischen Körper. Math. Ann.100 (1928) 650-673. Zbl54.0154.01MR1512509JFM55.0697.16
  12. 12 S. Sen: Ramification in p-adic Lie extensions. Inv. Math.17 (1972) 44-50. Zbl0242.12012MR319949
  13. 13 J.-P. Serre: Corps locaux. Hermann, Paris, 1962, or Grad. Texts in Math. 67, Springer-Verlag: Berlin, New York, 1979. Zbl0423.12016MR150130
  14. 14 J.-P. Serre: Propriétés galoisiennes des points d'ordre fini des courbes elliptiques. Inv. Math.15 (1972) 259-331. Zbl0235.14012MR387283
  15. 15 J.-P. Serre: Sur les représentations modulaires de degré 2 de Gal(Q/Q). Duke Math. J.54 (1987) 179-230. Zbl0641.10026MR885783
  16. 16 J.-P. Serre, J. Tate: Good reduction of abelian varieties. Annals of Mathematics88 (1968) 492-517. Zbl0172.46101MR236190
  17. 17 T. Saito*: Conductor, discriminant and the Noether formula for arithmetic surfaces. Duke Math. J.57 (1988) 151-173. Zbl0657.14017MR952229

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.