Global regularity for solutions to Dirichlet problem for discontinuous elliptic systems with nonlinearity and with natural growth
Bollettino dell'Unione Matematica Italiana (2005)
- Volume: 8-B, Issue: 2, page 519-524
- ISSN: 0392-4041
Access Full Article
topAbstract
topHow to cite
topGiuffrè, Sofia, and Idone, Giovanna. "Global regularity for solutions to Dirichlet problem for discontinuous elliptic systems with nonlinearity $q>1$ and with natural growth." Bollettino dell'Unione Matematica Italiana 8-B.2 (2005): 519-524. <http://eudml.org/doc/195193>.
@article{Giuffrè2005,
abstract = {In this paper we deal with the Hölder regularity up to the boundary of the solutions to a nonhomogeneous Dirichlet problem for second order discontinuous elliptic systems with nonlinearity $q>1$ and with natural growth. The aim of the paper is to clarify that the solutions of the above problem are always global Hölder continuous in the case of the dimension $n=q$ without any kind of regularity assumptions on the coefficients. As a consequence of this sharp result, the singular sets are always empty for $n=q$.Moreover we show that also for $1<q<2$, but $q$ close enough to 2, the solutions are global Hölder continuous for $n=2$.},
author = {Giuffrè, Sofia, Idone, Giovanna},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {6},
number = {2},
pages = {519-524},
publisher = {Unione Matematica Italiana},
title = {Global regularity for solutions to Dirichlet problem for discontinuous elliptic systems with nonlinearity $q>1$ and with natural growth},
url = {http://eudml.org/doc/195193},
volume = {8-B},
year = {2005},
}
TY - JOUR
AU - Giuffrè, Sofia
AU - Idone, Giovanna
TI - Global regularity for solutions to Dirichlet problem for discontinuous elliptic systems with nonlinearity $q>1$ and with natural growth
JO - Bollettino dell'Unione Matematica Italiana
DA - 2005/6//
PB - Unione Matematica Italiana
VL - 8-B
IS - 2
SP - 519
EP - 524
AB - In this paper we deal with the Hölder regularity up to the boundary of the solutions to a nonhomogeneous Dirichlet problem for second order discontinuous elliptic systems with nonlinearity $q>1$ and with natural growth. The aim of the paper is to clarify that the solutions of the above problem are always global Hölder continuous in the case of the dimension $n=q$ without any kind of regularity assumptions on the coefficients. As a consequence of this sharp result, the singular sets are always empty for $n=q$.Moreover we show that also for $1<q<2$, but $q$ close enough to 2, the solutions are global Hölder continuous for $n=2$.
LA - eng
UR - http://eudml.org/doc/195193
ER -
References
top- CAMPANATO, S., Sistemi ellittici in forma di divergenza. Regolarità all'interno, Quaderni S.N.S. di Pisa, 1980. Zbl0453.35026MR668196
- CAMPANATO, S., Hölder continuity and partial Hölder continuity results for solutions of nonlinear elliptic systems with controlled growth, Rend. Sem. Mat. Fis., 52 (Milano, 1982), 435-472. Zbl0576.35041MR802957
- CAMPANATO, S., Nonlinear elliptic systems with quadratic growth, Seminario Matematica Bari208 (1986). Zbl0651.35029MR852446
- CAMPANATO, S.,A bound for the solutions of a basic elliptic system with non-linearity , Atti Acc. Naz. Lincei (8), 80 (1986), 81-88. Zbl0695.35068MR976693
- CAMPANATO, S., Elliptic systems with nonlinearity q greater or equal to two, Regularity of the solution of the Dirichlet Problem, Ann. Mat. Pura e Appl., 147 (1987), 117-150. Zbl0635.35038MR916705
- COLOMBINI, F., Un teorema di regolarità di sistemi ellittici quasi lineari, Ann. Sc. Norm. Sup. Pisa, 25 (1971), 115-161. Zbl0211.13502MR289939
- DE GIORGI, E., Un esempio di estremali discontinue per un problema variazionale di tipo ellittico, Boll. Un. Mat. Ital. (4), 1 (1968), 135-137. Zbl0155.17603MR227827
- Fattorusso, L. - IDONE, G., Partial Hölder continuity results for solutions to non-linear nonvariational elliptic systems with limit controlled growth, Boll. Un. Mat. Ital., 8 (2002), 747-754. Zbl1177.35045MR1934378
- FREHSE, J., On the boundedness of weak solutions of higher order nonlinear elliptic partial differential equations, Boll. Un. Mat. Ital., 4 (1970), 607-627. Zbl0203.41303MR274938
- GEHRING, F. W., The -integrability of partial derivatives of a quasi-conformal mapping, Acta Math., 130 (1973), 265-277. Zbl0258.30021MR402038
- GIAQUINTA, M., A counter-example to the boundary regularity of solutions to elliptic quasilinear systems, Manus. Math.24 (1978), 217-220. Zbl0373.35027MR492658
- GIAQUINTA, M. - GIUSTI, E., Nonlinear elliptic systems with quadratic growth, Manus. Math., 24 (1978), 323-349. Zbl0378.35027MR481490
- GIAQUINTA, M. - MODICA, G., Almost-everywhere regularity results for solutions of nonlinear elliptic systems, Man. Math., 28 (1979), 109-158. Zbl0411.35018MR535699
- GIUSTI, E. - MIRANDA, M., Sulla regolarità delle soluzioni di una classe di sistemi ellittici quasi lineari, Arch. Ration. Mech. Anal., 31 (1968), 173-184. Zbl0167.10703MR235264
- GROTOWSKI, J. F., Boundary regularity for quasilinear elliptic systems, Comm. Partial Diff. Eq., 27 (2002), 2491-2512. Zbl1129.35352MR1944037
- MARINO, M. - MAUGERI, A., Boundary regularity results for nonvariational basic elliptic systems, Le Matematiche, 55 (2000), 109-123. Zbl1055.35043MR1899661
- MINGIONE, G., The singular set of solutions to non-differentiable elliptic systems, Arch. Rational Mech. Anal. (4), 166 (2003), 287-301. Zbl1142.35391MR1961442
- MINGIONE, G., Bounds for the singular set of solutions to non linear elliptic systems, Calc. Var., 18 (2003), 373-400. Zbl1045.35024MR2020367
- NAUMANN, J., Interior integral estimates on weak solutions of certain degenerate elliptic systems, Ann. Mat. Pura Appl., 156 (1990), 113-125. Zbl0732.35032MR1080212
- NAUMANN, J. - WOLF, J., On the interior regularity of weak solutions of degenerate elliptic systems (the case 1 < p < 2), Rend. Sem. Mat. Univ. Padova, 88 (1992), 55-81. Zbl0818.35024MR1209116
- NEČAS, J. - STARÁ, J., Principio di massimo per i sistemi ellittici quasi lineari non diagonali, Boll. Un. Mat. Ital., 6 (1972), 1-10. Zbl0267.35040MR315281
- WIDMAN, K. O., Hölder continuity of solutions of elliptic systems, Manus. Math., 5 (1971), 299-308. Zbl0223.35044MR296484
- WOLF, J., Partial regularity of weak solutions to nonlinear elliptic systems satisfying a Dini condition, Zeit. Anal. und Appl. (2), 19 (2001), 315-330. Zbl1163.35329MR1846604
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.