Partial Hölder continuity results for solutions of non linear non variational elliptic systems with limit controlled growth
Luisa Fattorusso; Giovanna Idone
Bollettino dell'Unione Matematica Italiana (2002)
- Volume: 5-B, Issue: 3, page 747-754
- ISSN: 0392-4041
Access Full Article
topAbstract
topHow to cite
topFattorusso, Luisa, and Idone, Giovanna. "Partial Hölder continuity results for solutions of non linear non variational elliptic systems with limit controlled growth." Bollettino dell'Unione Matematica Italiana 5-B.3 (2002): 747-754. <http://eudml.org/doc/196172>.
@article{Fattorusso2002,
abstract = {Let $\Omega$ be a bounded open subset of $R^\{n\}$, $n > 4$, of class $C^\{2\}$ . Let $u\in H^\{2\}(\Omega)$ a solution of elliptic non linear non variational system $$a(x, u, Du, H(u) )=b(x, u, Du)$$ where $a(x, u, \mu, \xi)$ and $b(x, u, \mu)$ are vectors in $R^\{N\}$, $N\geq 1$, measurable in $x$, continuous in $(u, \mu, \xi)$ and $(u, \mu)$ respectively. Here, we demonstrate that if $b(x, u, \mu)$ has limit controlled growth, if $a(x, u, \mu, \xi)$ is of class $C^\{1\}$ in $\xi$ and satisfies the Campanato condition $(A)$ and, together with $\frac\{\partial a\}\{\partial \xi\}$, certain continuity assumptions, then the vector $Du$ is partially Hölder continuous for every exponent $\alpha < 1-\frac\{n\}\{p\}$.},
author = {Fattorusso, Luisa, Idone, Giovanna},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {10},
number = {3},
pages = {747-754},
publisher = {Unione Matematica Italiana},
title = {Partial Hölder continuity results for solutions of non linear non variational elliptic systems with limit controlled growth},
url = {http://eudml.org/doc/196172},
volume = {5-B},
year = {2002},
}
TY - JOUR
AU - Fattorusso, Luisa
AU - Idone, Giovanna
TI - Partial Hölder continuity results for solutions of non linear non variational elliptic systems with limit controlled growth
JO - Bollettino dell'Unione Matematica Italiana
DA - 2002/10//
PB - Unione Matematica Italiana
VL - 5-B
IS - 3
SP - 747
EP - 754
AB - Let $\Omega$ be a bounded open subset of $R^{n}$, $n > 4$, of class $C^{2}$ . Let $u\in H^{2}(\Omega)$ a solution of elliptic non linear non variational system $$a(x, u, Du, H(u) )=b(x, u, Du)$$ where $a(x, u, \mu, \xi)$ and $b(x, u, \mu)$ are vectors in $R^{N}$, $N\geq 1$, measurable in $x$, continuous in $(u, \mu, \xi)$ and $(u, \mu)$ respectively. Here, we demonstrate that if $b(x, u, \mu)$ has limit controlled growth, if $a(x, u, \mu, \xi)$ is of class $C^{1}$ in $\xi$ and satisfies the Campanato condition $(A)$ and, together with $\frac{\partial a}{\partial \xi}$, certain continuity assumptions, then the vector $Du$ is partially Hölder continuous for every exponent $\alpha < 1-\frac{n}{p}$.
LA - eng
UR - http://eudml.org/doc/196172
ER -
References
top- FATTORUSSO, L.- IDONE, G., Partial Hölder continuity results for solutions of non linear non variational elliptic systems with strictly controlled growth, Rend. Sem. Mat. Padova, 103 (2000), 23-29. Zbl0969.35057MR1789529
- CAMPANATO, S., theory for non linear non variational differential system, Rend. Matem. Serie VII, 10 Roma (1990), 531-549. Zbl0777.35028MR1080312
- CAMPANATO, S., Sistemi ellittici in forma di divergenza: Regolarità all'interno. Quaderniscuola Normale Sup. Pisa, 1980. Zbl0453.35026MR668196
- CAMPANATO, S., Hölder continuity and partial Hölder continuity results for solution of non linear elliptic system with controlled growth, Rendiconti Sem. Mat. e Fis. Milano., Vol. LII (1982). Zbl0576.35041
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.