On weighted inductive limits of non-Archimedean spaces of continuous functions

A. K. Katsaras; V. Benekas

Bollettino dell'Unione Matematica Italiana (2000)

  • Volume: 3-B, Issue: 3, page 757-774
  • ISSN: 0392-4041

How to cite

top

Katsaras, A. K., and Benekas, V.. "On weighted inductive limits of non-Archimedean spaces of continuous functions." Bollettino dell'Unione Matematica Italiana 3-B.3 (2000): 757-774. <http://eudml.org/doc/195198>.

@article{Katsaras2000,
author = {Katsaras, A. K., Benekas, V.},
journal = {Bollettino dell'Unione Matematica Italiana},
keywords = {weighted inductive limits of non-Archimedean spaces of continuous functions; weighted spaces of continuous functions; non-Archimedean nontrivially complete field; decreasing sequence of upper semicontinuous functions},
language = {eng},
month = {10},
number = {3},
pages = {757-774},
publisher = {Unione Matematica Italiana},
title = {On weighted inductive limits of non-Archimedean spaces of continuous functions},
url = {http://eudml.org/doc/195198},
volume = {3-B},
year = {2000},
}

TY - JOUR
AU - Katsaras, A. K.
AU - Benekas, V.
TI - On weighted inductive limits of non-Archimedean spaces of continuous functions
JO - Bollettino dell'Unione Matematica Italiana
DA - 2000/10//
PB - Unione Matematica Italiana
VL - 3-B
IS - 3
SP - 757
EP - 774
LA - eng
KW - weighted inductive limits of non-Archimedean spaces of continuous functions; weighted spaces of continuous functions; non-Archimedean nontrivially complete field; decreasing sequence of upper semicontinuous functions
UR - http://eudml.org/doc/195198
ER -

References

top
  1. BASTIN, F., On bornological C V ¯ X spaces, Arch. Math., 53 (1989), 394-398. Zbl0693.46022MR1016004
  2. BASTIN, F., Weighted spaces of continuous functions, Bull. Soc. Roy. Sc. Liège, 1 (1990), 1-81. Zbl0705.46010MR1039680
  3. BASTIN, F.- ERNST, B., A criterion for C V X to be quasinormable, Results in Math., 14 (1988), 223-230. Zbl0705.46011MR964041
  4. BIERSTEDT, K. D., The approximation property for weighted function spaces, Bonner Math. Schriften, 81 (1975), 3-25. Zbl0333.46023MR493282
  5. BIERSTEDT, K. D., Tensor products of weighted spaces, Bonner Math. Schriften, 81 (1975), 26-58. Zbl0333.46024MR493283
  6. BIERSTEDT, K. D.- BONET, J., Stefan Heinrich's density condition for Fréchet spaces and the characterization of the distinguished Köthe echelon spaces, Math. Nach., 135 (1988), 149-180. Zbl0688.46001MR944226
  7. BIERSTEDT, K. D.- BONET, J., Dual density conditions in (DF)-spaces I, Results in Math., 14 (1988), 242-274. Zbl0688.46002MR964043
  8. BIERSTEDT, K. D.- BONET, J., Dual density conditions in (DF)-spaces, Bull. Soc. Roy. Sc. Liège, 57 (1988), 567-589. Zbl0688.46003MR986374
  9. BIERSTEDT, K. D.- BONET, J., Some results on V C X , pp. 181-194 in: T. Terzioglu (Ed.), Advances in the theory of Fréchet spaces, Kluwer Academic Publishers, 1989. Zbl0716.46026MR1083564
  10. BIERSTEDT, K. D.- BONET, J., Completeness of the (LB)-space V C X , Arch. Math. (Basel), 56 (1991), 281-288. Zbl0688.46004MR1091882
  11. BIERSTEDT, K. D.- MEISE, R., Distinguished echelon spaces and the projective description of weighted inductive limits of type V d C X , pp. 169-226 in: Aspects in Mathematics and its Applications, Elsevier Science Publ. B. V., North-Holland Math. Library, 1986. Zbl0645.46027MR849552
  12. BIERSTEDT, K. D.- MEISE, R.- SUMMERS, W. H., A projective description of weighted inductive limits, Trans. Amer. Math. Soc., 272 (1982), 107-160. Zbl0599.46026MR656483
  13. BIERSTEDT, K. D.- MEISE, R.- SUMMERS, W. H., Köthe sets and Köthe sequence spaces, pp. 27-91 in: Functional Analysis, Holomorphy and Approximation Theory, North-Holland Math. Studies, 71, 1982. Zbl0504.46007MR691159
  14. BONET, J., A projective description of weighted inductive limits of spaces of vector valued continuous functions, Collectanea Math., 34 (1983), 115-125. Zbl0708.46037MR766993
  15. BONET, J., On weighted inductive limits of spaces of continuous functions, Math. Z., 192 (1986), 9-20. Zbl0575.46025MR835386
  16. CARNEIRO, J. P. Q., Non-Archimedean weighted approximation (in Portuguese), An. Acad. Bras. Ci., 50 (1) (1978), 1-34. Zbl0399.41033MR473806
  17. CARNEIRO, J. P. Q., Non-Archimedean weighted approximation, pp. 121-131 in: Approximation Theory and Functional Analysis (J. B. Prolla, editor), North-Holland Publ. Co. (Amsterdam), 1979. Zbl0432.41021MR553418
  18. DE GRANDE-DE KIMPE, N.- KĄKOL, J.- PEREZ-GARCIA, C.- SCHIKHOF, W. H., p -adic locally convex inductive limits, pp. 159-222 in: p -adic Functional Analysis, Marcel Dekker, Inc., Lecture Notes in Pure and Applied Mathematics, 192, 1997. Zbl0889.46063MR1459211
  19. ERNST, B., On the uniqueness of weighted (DF)-topologies, Bull. Soc. Roy. Sc. de Liège, 5-6 (1987), 451-461. Zbl0645.46028MR929910
  20. ERNST, B.- SCHETTLER, P., On weighted spaces with a fundamental sequence of bounded sets, Arch. Math., 47 (1986), 552-559. Zbl0612.46026MR871295
  21. KATSARAS, A. K.- BELOYIANNIS, A., Non-Archimedean weighted spaces of continuous functions, Rendiconti di Mat. Serie VII, vol. 16 (1996), 545-562. Zbl0911.46049MR1451076
  22. KATSARAS, A. K.- BELOYIANNIS, A., On non-Archimedean weighted spaces of continuous functions, pp. 237-252 in: p -adic Functional Analysis, Lecture Notes in Pure and Applied Mathematics192, Marcel Dekker, 1997. Zbl0947.46057MR1459213
  23. KATSARAS, A. K.- BELOYIANNIS, A., Tensor products of non-Archimedean weighted spaces of continuous functions, Georgian J. Math., Vol. 6, No 1 (1999), 33-44. Zbl0921.46085MR1672990
  24. NACHBIN, L., Elements of Approximation Theory, Van Nostrand Math. Studies, 14, 1967. Zbl0173.41403MR217483
  25. PROLLA, J. B., Weighted spaces of vector-valued continuous functions, Ann. Mat. Pura Appl. (4) 89 (1971), 145-158. Zbl0224.46024MR308771
  26. SCHIKHOF, W. H., Locally convex spaces over non-spherically complete valued fields I, II, Bul. Soc. Math. Belg., serie B XXXVIII (1986), 187-224. Zbl0615.46071MR871313
  27. VAN ROOIJ, A. C. M., Non-Archimedean Functional Analysis, New York and Basel, Marcel Dekker, Inc., 1978. Zbl0396.46061MR512894

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.