-convergence of constrained Dirichlet functionals
Bollettino dell'Unione Matematica Italiana (2003)
- Volume: 6-B, Issue: 2, page 339-351
- ISSN: 0392-4041
Access Full Article
topAbstract
topHow to cite
topLeonardi, Gian Paolo. "$\Gamma$-convergence of constrained Dirichlet functionals." Bollettino dell'Unione Matematica Italiana 6-B.2 (2003): 339-351. <http://eudml.org/doc/195247>.
@article{Leonardi2003,
abstract = {Given an open, bounded and connected set $\Omega\subset \mathbb\{R\}^\{n\}$ with Lipschitz boundary and volume $|\Omega|$, we prove that the sequence $\mathcal\{F\}_\{k\}$ of Dirichlet functionals defined on $H^\{1\}(\Omega; \mathbb\{R\}^\{d\})$, with volume constraints $v^\{k\}$ on $m\geq2$ fixed level-sets, and such that $\sum_\{i=1\}^\{m\}v_\{i\}^\{k\}< |\Omega|$ for all $k$, $\Gamma$-converges, as $v^\{k\}\rightarrow v$ with $\sum_\{i=1\}^\{m\}v_\{i\}^\{k\}=|\Omega|$, to the squared total variation on $BV(V; \mathbb\{R\}^\{d\})$, with $v$ as volume constraint on the same level-sets.},
author = {Leonardi, Gian Paolo},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {6},
number = {2},
pages = {339-351},
publisher = {Unione Matematica Italiana},
title = {$\Gamma$-convergence of constrained Dirichlet functionals},
url = {http://eudml.org/doc/195247},
volume = {6-B},
year = {2003},
}
TY - JOUR
AU - Leonardi, Gian Paolo
TI - $\Gamma$-convergence of constrained Dirichlet functionals
JO - Bollettino dell'Unione Matematica Italiana
DA - 2003/6//
PB - Unione Matematica Italiana
VL - 6-B
IS - 2
SP - 339
EP - 351
AB - Given an open, bounded and connected set $\Omega\subset \mathbb{R}^{n}$ with Lipschitz boundary and volume $|\Omega|$, we prove that the sequence $\mathcal{F}_{k}$ of Dirichlet functionals defined on $H^{1}(\Omega; \mathbb{R}^{d})$, with volume constraints $v^{k}$ on $m\geq2$ fixed level-sets, and such that $\sum_{i=1}^{m}v_{i}^{k}< |\Omega|$ for all $k$, $\Gamma$-converges, as $v^{k}\rightarrow v$ with $\sum_{i=1}^{m}v_{i}^{k}=|\Omega|$, to the squared total variation on $BV(V; \mathbb{R}^{d})$, with $v$ as volume constraint on the same level-sets.
LA - eng
UR - http://eudml.org/doc/195247
ER -
References
top- ALT, H. W.- CAFFARELLI, L. A., Existence and regularity for a minimum problem with free boundary, J. Reine Angew. Math., 325 (1981), 105-144. Zbl0449.35105MR618549
- AMBROSIO, L., Corso introduttivo alla Teoria Geometrica della Misura ed alle superfici minime, Scuola Norm. Sup., Pisa, 1997. Zbl0977.49028MR1736268
- AMBROSIO, L.- FONSECA, I.- MARCELLINI, P.- TARTAR, L., On a volume-constrained variational problem, Arch. Ration. Mech. Anal., 149 (1999), 23-47. Zbl0945.49005MR1723033
- AMBROSIO, L.- FUSCO, N.- PALLARA, D., Functions of bounded variation and free discontinuity problems, The Clarendon Press Oxford University Press, New York, 2000. Oxford Science Publications. Zbl0957.49001MR1857292
- BALDO, S., Minimal interface criterion for phase transitions in mixtures of Cahn-Hilliard fluids, Ann. Inst. H. Poincare Anal. Non Lineaire, 7 (1990), 67-90. Zbl0702.49009MR1051228
- DAL MASO, G., An introduction to -convergence, Birkhauser Boston Inc., Boston, MA, 1993. Zbl0816.49001MR1201152
- EVANS, L. C.- GARIEPY, R. F., Lecture Notes on Measure Theory and Fine Properties of Functions, Studies in Advanced Math., CRC Press, Ann Harbor, 1992. Zbl0804.28001MR1158660
- FORD, L. R. JR.- FULKERSON, D. R., Flows in networks, Princeton University Press, Princeton, N.J., 1962. Zbl0106.34802MR159700
- GIAQUINTA, M.- MODICA, G.- SOUČEK, J., Cartesian currents in the calculus of variations. I, cartesian currents. II, variational integrals, Springer-Verlag, Berlin, 1998. Zbl0914.49001MR1645086
- GIUSTI, E., Minimal surfaces and functions of bounded variation, Birkhauser, Boston-Basel-Stuttgart, 1984. Zbl0545.49018MR775682
- GURTIN, M. E.- POLIGNONE, D.- VIÑALS, J., Two-phase binary fluids and immiscible fluids described by an order parameter, Math. Models Methods Appl. Sci., 6 (1996), 815-831. Zbl0857.76008MR1404829
- MORGAN, F., Geometric measure theory . A beginner's guide, Academic Press Inc., San Diego, CA, second ed., 1995. Zbl0819.49024MR1326605
- MOSCONI, S. J. N.- TILLI, P., Variational problems with several volume constraints on the level sets, preprint Scuola Norm. Sup. Pisa (2000). Zbl0995.49003
- STEPANOV, E.- TILLI, P., On the dirichlet problem with several volume constraints on the level sets, preprint Scuola Norm. Sup. Pisa, (2000). Zbl1022.35010MR1899831
- TILLI, P., On a constrained variational problem with an arbitrary number of free boundaries, Interfaces Free Bound., 2 (2000), 201-212. Zbl0995.49002MR1760412
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.