Γ -convergence of constrained Dirichlet functionals

Gian Paolo Leonardi

Bollettino dell'Unione Matematica Italiana (2003)

  • Volume: 6-B, Issue: 2, page 339-351
  • ISSN: 0392-4041

Abstract

top
Given an open, bounded and connected set Ω R n with Lipschitz boundary and volume Ω , we prove that the sequence F k of Dirichlet functionals defined on H 1 Ω ; R d , with volume constraints v k on m 2 fixed level-sets, and such that i = 1 m v i k < Ω for all k , Γ -converges, as v k v with i = 1 m v i k = Ω , to the squared total variation on B V V ; R d , with v as volume constraint on the same level-sets.

How to cite

top

Leonardi, Gian Paolo. "$\Gamma$-convergence of constrained Dirichlet functionals." Bollettino dell'Unione Matematica Italiana 6-B.2 (2003): 339-351. <http://eudml.org/doc/195247>.

@article{Leonardi2003,
abstract = {Given an open, bounded and connected set $\Omega\subset \mathbb\{R\}^\{n\}$ with Lipschitz boundary and volume $|\Omega|$, we prove that the sequence $\mathcal\{F\}_\{k\}$ of Dirichlet functionals defined on $H^\{1\}(\Omega; \mathbb\{R\}^\{d\})$, with volume constraints $v^\{k\}$ on $m\geq2$ fixed level-sets, and such that $\sum_\{i=1\}^\{m\}v_\{i\}^\{k\}< |\Omega|$ for all $k$, $\Gamma$-converges, as $v^\{k\}\rightarrow v$ with $\sum_\{i=1\}^\{m\}v_\{i\}^\{k\}=|\Omega|$, to the squared total variation on $BV(V; \mathbb\{R\}^\{d\})$, with $v$ as volume constraint on the same level-sets.},
author = {Leonardi, Gian Paolo},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {6},
number = {2},
pages = {339-351},
publisher = {Unione Matematica Italiana},
title = {$\Gamma$-convergence of constrained Dirichlet functionals},
url = {http://eudml.org/doc/195247},
volume = {6-B},
year = {2003},
}

TY - JOUR
AU - Leonardi, Gian Paolo
TI - $\Gamma$-convergence of constrained Dirichlet functionals
JO - Bollettino dell'Unione Matematica Italiana
DA - 2003/6//
PB - Unione Matematica Italiana
VL - 6-B
IS - 2
SP - 339
EP - 351
AB - Given an open, bounded and connected set $\Omega\subset \mathbb{R}^{n}$ with Lipschitz boundary and volume $|\Omega|$, we prove that the sequence $\mathcal{F}_{k}$ of Dirichlet functionals defined on $H^{1}(\Omega; \mathbb{R}^{d})$, with volume constraints $v^{k}$ on $m\geq2$ fixed level-sets, and such that $\sum_{i=1}^{m}v_{i}^{k}< |\Omega|$ for all $k$, $\Gamma$-converges, as $v^{k}\rightarrow v$ with $\sum_{i=1}^{m}v_{i}^{k}=|\Omega|$, to the squared total variation on $BV(V; \mathbb{R}^{d})$, with $v$ as volume constraint on the same level-sets.
LA - eng
UR - http://eudml.org/doc/195247
ER -

References

top
  1. ALT, H. W.- CAFFARELLI, L. A., Existence and regularity for a minimum problem with free boundary, J. Reine Angew. Math., 325 (1981), 105-144. Zbl0449.35105MR618549
  2. AMBROSIO, L., Corso introduttivo alla Teoria Geometrica della Misura ed alle superfici minime, Scuola Norm. Sup., Pisa, 1997. Zbl0977.49028MR1736268
  3. AMBROSIO, L.- FONSECA, I.- MARCELLINI, P.- TARTAR, L., On a volume-constrained variational problem, Arch. Ration. Mech. Anal., 149 (1999), 23-47. Zbl0945.49005MR1723033
  4. AMBROSIO, L.- FUSCO, N.- PALLARA, D., Functions of bounded variation and free discontinuity problems, The Clarendon Press Oxford University Press, New York, 2000. Oxford Science Publications. Zbl0957.49001MR1857292
  5. BALDO, S., Minimal interface criterion for phase transitions in mixtures of Cahn-Hilliard fluids, Ann. Inst. H. Poincare Anal. Non Lineaire, 7 (1990), 67-90. Zbl0702.49009MR1051228
  6. DAL MASO, G., An introduction to Γ -convergence, Birkhauser Boston Inc., Boston, MA, 1993. Zbl0816.49001MR1201152
  7. EVANS, L. C.- GARIEPY, R. F., Lecture Notes on Measure Theory and Fine Properties of Functions, Studies in Advanced Math., CRC Press, Ann Harbor, 1992. Zbl0804.28001MR1158660
  8. FORD, L. R. JR.- FULKERSON, D. R., Flows in networks, Princeton University Press, Princeton, N.J., 1962. Zbl0106.34802MR159700
  9. GIAQUINTA, M.- MODICA, G.- SOUČEK, J., Cartesian currents in the calculus of variations. I, cartesian currents. II, variational integrals, Springer-Verlag, Berlin, 1998. Zbl0914.49001MR1645086
  10. GIUSTI, E., Minimal surfaces and functions of bounded variation, Birkhauser, Boston-Basel-Stuttgart, 1984. Zbl0545.49018MR775682
  11. GURTIN, M. E.- POLIGNONE, D.- VIÑALS, J., Two-phase binary fluids and immiscible fluids described by an order parameter, Math. Models Methods Appl. Sci., 6 (1996), 815-831. Zbl0857.76008MR1404829
  12. MORGAN, F., Geometric measure theory . A beginner's guide, Academic Press Inc., San Diego, CA, second ed., 1995. Zbl0819.49024MR1326605
  13. MOSCONI, S. J. N.- TILLI, P., Variational problems with several volume constraints on the level sets, preprint Scuola Norm. Sup. Pisa (2000). Zbl0995.49003
  14. STEPANOV, E.- TILLI, P., On the dirichlet problem with several volume constraints on the level sets, preprint Scuola Norm. Sup. Pisa, (2000). Zbl1022.35010MR1899831
  15. TILLI, P., On a constrained variational problem with an arbitrary number of free boundaries, Interfaces Free Bound., 2 (2000), 201-212. Zbl0995.49002MR1760412

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.