# Existence and regularity for a minimum problem with free boundary.

Journal für die reine und angewandte Mathematik (1981)

- Volume: 325, page 105-144
- ISSN: 0075-4102; 1435-5345/e

## Access Full Article

top## How to cite

topAlt, H.W., and Caffarelli, L.A.. "Existence and regularity for a minimum problem with free boundary.." Journal für die reine und angewandte Mathematik 325 (1981): 105-144. <http://eudml.org/doc/152360>.

@article{Alt1981,

author = {Alt, H.W., Caffarelli, L.A.},

journal = {Journal für die reine und angewandte Mathematik},

keywords = {minimum problem; harmonic function; free boundary conditions; two dimensional flow problems; heat flow problems; non-degeneracy of the solution; regularity; subharmonic function; regularity theory for minimal surfaces; existense; obstacle problems},

pages = {105-144},

title = {Existence and regularity for a minimum problem with free boundary.},

url = {http://eudml.org/doc/152360},

volume = {325},

year = {1981},

}

TY - JOUR

AU - Alt, H.W.

AU - Caffarelli, L.A.

TI - Existence and regularity for a minimum problem with free boundary.

JO - Journal für die reine und angewandte Mathematik

PY - 1981

VL - 325

SP - 105

EP - 144

KW - minimum problem; harmonic function; free boundary conditions; two dimensional flow problems; heat flow problems; non-degeneracy of the solution; regularity; subharmonic function; regularity theory for minimal surfaces; existense; obstacle problems

UR - http://eudml.org/doc/152360

ER -

## Citations in EuDML Documents

top- Raul B. Gonzalez de Paz, On the optimal design of elastic shafts
- N. E. Aguilera, L. A. Caffarelli, J. Spruck, An optimization problem in heat conduction
- Ana Cristina Barroso, José Matias, On a volume constrained variational problem in SBV${}^{2}\left(\Omega \right)$ : part I
- Gian Paolo Leonardi, $\mathrm{\Gamma}$-convergence of constrained Dirichlet functionals
- Timo Tiihonen, Shape optimization and trial methods for free boundary problems
- Tanguy Briancon, Regularity of optimal shapes for the Dirichlet’s energy with volume constraint
- Giuseppe Buttazzo, Augusto Gerolin, Berardo Ruffini, Bozhidar Velichkov, Optimal potentials for Schrödinger operators
- Tanguy Briancon, Regularity of optimal shapes for the Dirichlet's energy with volume constraint
- Ana Cristina Barroso, José Matias, On a Volume Constrained Variational Problem in SBV²(Ω): Part I
- Tanguy Briançon, Jimmy Lamboley, Regularity of the optimal shape for the first eigenvalue of the laplacian with volume and inclusion constraints

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.