Hausdorff Fréchet closure spaces with maximum topological defect

Riccardo Ghiloni

Bollettino dell'Unione Matematica Italiana (2002)

  • Volume: 5-B, Issue: 3, page 641-665
  • ISSN: 0392-4041

Abstract

top
It is well-known that the topological defect of every Fréchet closure space is less than or equal to the first uncountable ordinal number ω 1 . In the case of Hausdorff Fréchet closure spaces we obtain some general conditions sufficient so that the topological defect is exactly ω 1 . Some classical and recent results are deduced from our criterion.

How to cite

top

Ghiloni, Riccardo. "Hausdorff Fréchet closure spaces with maximum topological defect." Bollettino dell'Unione Matematica Italiana 5-B.3 (2002): 641-665. <http://eudml.org/doc/195263>.

@article{Ghiloni2002,
abstract = {It is well-known that the topological defect of every Fréchet closure space is less than or equal to the first uncountable ordinal number $\omega_\{1\}$. In the case of Hausdorff Fréchet closure spaces we obtain some general conditions sufficient so that the topological defect is exactly $\omega_\{1\}$. Some classical and recent results are deduced from our criterion.},
author = {Ghiloni, Riccardo},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {10},
number = {3},
pages = {641-665},
publisher = {Unione Matematica Italiana},
title = {Hausdorff Fréchet closure spaces with maximum topological defect},
url = {http://eudml.org/doc/195263},
volume = {5-B},
year = {2002},
}

TY - JOUR
AU - Ghiloni, Riccardo
TI - Hausdorff Fréchet closure spaces with maximum topological defect
JO - Bollettino dell'Unione Matematica Italiana
DA - 2002/10//
PB - Unione Matematica Italiana
VL - 5-B
IS - 3
SP - 641
EP - 665
AB - It is well-known that the topological defect of every Fréchet closure space is less than or equal to the first uncountable ordinal number $\omega_{1}$. In the case of Hausdorff Fréchet closure spaces we obtain some general conditions sufficient so that the topological defect is exactly $\omega_{1}$. Some classical and recent results are deduced from our criterion.
LA - eng
UR - http://eudml.org/doc/195263
ER -

References

top
  1. ARHANGEL'SKIĬ, A. V.- FRANKLIN, S. P., Ordinal invariants for topological spaces, Mich. Math. J., 15 (1968), 313-320. Zbl0167.51102MR240767
  2. ČECH, E., Topological Spaces, Wiley, London1966. Zbl0141.39401
  3. DOLECKI, S.- GRECO, G. H., Topologically maximal pretopologies, Stud. Math., 77 (1984), 265-281. Zbl0487.54003MR745283
  4. DOLECKI, S.- GRECO, G. H., Cyrtologies of Convergences, II: Sequential Convergences, Math. Nachr., 127 (1986), 317-334. Zbl0613.54001MR861735
  5. DOLCHER, M., Topologie e strutture di convergenza, Ann. Scuola Norm. Sup. Pisa, Sci. Fis. Mat., III Ser., 14 (1960), 63-92. Zbl0178.25502MR114201
  6. FRIČ, R., On plane topologies with high sequential order, Commentat. Math. Univ. Carol., 31, 1 (1990), 33-36. Zbl0697.54014MR1056168
  7. FRANKLIN, S. P., Spaces in which sequences suffice, Fundam. Math., 57 (1965), 107-115. Zbl0132.17802MR180954
  8. FRANKLIN, S. P., Spaces in which sequences suffice II, Fundam. Math., 61 (1967), 51-56. Zbl0168.43502MR222832
  9. FRÉCHET, M., Sur quelques points du calcul fonctionnel, Rend. Circ. Mat. Palermo, 22 (1906), 1-74. JFM37.0348.02
  10. GRECO, G. H., The sequential defect of the cross topology is ω 1 , Topology Appl., 19 (1985), 91-94. Zbl0569.54028MR786084
  11. HAUSDORFF, F., Gestufte Raüme, Fundam. Math., 25 (1935), 486-502. Zbl0012.42103
  12. KURATOWSKI, K., Une méthode d'élimination des nombres transfinis des raisonnements mathématiques, Fundam. Math., 3 (1922), 76-108. JFM48.0205.04
  13. NOVÁK, J., On some problems concerning multivalued convergences, Czech. Math. J., 14 (89) (1964), 548-561. Zbl0127.38504MR176439
  14. NOVÁK, J., On convergence spaces and their sequential envelopes, Czech. Math. J., 15 (90) (1965), 74-100. Zbl0139.15906MR175083

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.