Hausdorff Fréchet closure spaces with maximum topological defect
Bollettino dell'Unione Matematica Italiana (2002)
- Volume: 5-B, Issue: 3, page 641-665
- ISSN: 0392-4041
Access Full Article
topAbstract
topHow to cite
topGhiloni, Riccardo. "Hausdorff Fréchet closure spaces with maximum topological defect." Bollettino dell'Unione Matematica Italiana 5-B.3 (2002): 641-665. <http://eudml.org/doc/195263>.
@article{Ghiloni2002,
abstract = {It is well-known that the topological defect of every Fréchet closure space is less than or equal to the first uncountable ordinal number $\omega_\{1\}$. In the case of Hausdorff Fréchet closure spaces we obtain some general conditions sufficient so that the topological defect is exactly $\omega_\{1\}$. Some classical and recent results are deduced from our criterion.},
author = {Ghiloni, Riccardo},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {10},
number = {3},
pages = {641-665},
publisher = {Unione Matematica Italiana},
title = {Hausdorff Fréchet closure spaces with maximum topological defect},
url = {http://eudml.org/doc/195263},
volume = {5-B},
year = {2002},
}
TY - JOUR
AU - Ghiloni, Riccardo
TI - Hausdorff Fréchet closure spaces with maximum topological defect
JO - Bollettino dell'Unione Matematica Italiana
DA - 2002/10//
PB - Unione Matematica Italiana
VL - 5-B
IS - 3
SP - 641
EP - 665
AB - It is well-known that the topological defect of every Fréchet closure space is less than or equal to the first uncountable ordinal number $\omega_{1}$. In the case of Hausdorff Fréchet closure spaces we obtain some general conditions sufficient so that the topological defect is exactly $\omega_{1}$. Some classical and recent results are deduced from our criterion.
LA - eng
UR - http://eudml.org/doc/195263
ER -
References
top- ARHANGEL'SKIĬ, A. V.- FRANKLIN, S. P., Ordinal invariants for topological spaces, Mich. Math. J., 15 (1968), 313-320. Zbl0167.51102MR240767
- ČECH, E., Topological Spaces, Wiley, London1966. Zbl0141.39401
- DOLECKI, S.- GRECO, G. H., Topologically maximal pretopologies, Stud. Math., 77 (1984), 265-281. Zbl0487.54003MR745283
- DOLECKI, S.- GRECO, G. H., Cyrtologies of Convergences, II: Sequential Convergences, Math. Nachr., 127 (1986), 317-334. Zbl0613.54001MR861735
- DOLCHER, M., Topologie e strutture di convergenza, Ann. Scuola Norm. Sup. Pisa, Sci. Fis. Mat., III Ser., 14 (1960), 63-92. Zbl0178.25502MR114201
- FRIČ, R., On plane topologies with high sequential order, Commentat. Math. Univ. Carol., 31, 1 (1990), 33-36. Zbl0697.54014MR1056168
- FRANKLIN, S. P., Spaces in which sequences suffice, Fundam. Math., 57 (1965), 107-115. Zbl0132.17802MR180954
- FRANKLIN, S. P., Spaces in which sequences suffice II, Fundam. Math., 61 (1967), 51-56. Zbl0168.43502MR222832
- FRÉCHET, M., Sur quelques points du calcul fonctionnel, Rend. Circ. Mat. Palermo, 22 (1906), 1-74. JFM37.0348.02
- GRECO, G. H., The sequential defect of the cross topology is , Topology Appl., 19 (1985), 91-94. Zbl0569.54028MR786084
- HAUSDORFF, F., Gestufte Raüme, Fundam. Math., 25 (1935), 486-502. Zbl0012.42103
- KURATOWSKI, K., Une méthode d'élimination des nombres transfinis des raisonnements mathématiques, Fundam. Math., 3 (1922), 76-108. JFM48.0205.04
- NOVÁK, J., On some problems concerning multivalued convergences, Czech. Math. J., 14 (89) (1964), 548-561. Zbl0127.38504MR176439
- NOVÁK, J., On convergence spaces and their sequential envelopes, Czech. Math. J., 15 (90) (1965), 74-100. Zbl0139.15906MR175083
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.