Nonlinear parabolic equations with natural growth in general domains

A. Dall'aglio; D. Giachetti; J.-P. Puel

Bollettino dell'Unione Matematica Italiana (2005)

  • Volume: 8-B, Issue: 3, page 653-683
  • ISSN: 0392-4041

Abstract

top
We prove an existence result for a class of parabolic problems whose principal part is the p -Laplace operator or a more general Leray-Lions type operator, and featuring an additional first order term which grows like | u | p . Here the spatial domain can have infinite measure, and the data may be not regular enough to ensure the boundedness of solutions. As a consequence, solutions are obtained in a class of functions with exponential integrability. An existence result of bounded solutions is also given under additional hypotheses.

How to cite

top

Dall'aglio, A., Giachetti, D., and Puel, J.-P.. "Nonlinear parabolic equations with natural growth in general domains." Bollettino dell'Unione Matematica Italiana 8-B.3 (2005): 653-683. <http://eudml.org/doc/195326>.

@article{Dallaglio2005,
abstract = {We prove an existence result for a class of parabolic problems whose principal part is the $p$-Laplace operator or a more general Leray-Lions type operator, and featuring an additional first order term which grows like $|\nabla u |^\{p\}$. Here the spatial domain can have infinite measure, and the data may be not regular enough to ensure the boundedness of solutions. As a consequence, solutions are obtained in a class of functions with exponential integrability. An existence result of bounded solutions is also given under additional hypotheses.},
author = {Dall'aglio, A., Giachetti, D., Puel, J.-P.},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {10},
number = {3},
pages = {653-683},
publisher = {Unione Matematica Italiana},
title = {Nonlinear parabolic equations with natural growth in general domains},
url = {http://eudml.org/doc/195326},
volume = {8-B},
year = {2005},
}

TY - JOUR
AU - Dall'aglio, A.
AU - Giachetti, D.
AU - Puel, J.-P.
TI - Nonlinear parabolic equations with natural growth in general domains
JO - Bollettino dell'Unione Matematica Italiana
DA - 2005/10//
PB - Unione Matematica Italiana
VL - 8-B
IS - 3
SP - 653
EP - 683
AB - We prove an existence result for a class of parabolic problems whose principal part is the $p$-Laplace operator or a more general Leray-Lions type operator, and featuring an additional first order term which grows like $|\nabla u |^{p}$. Here the spatial domain can have infinite measure, and the data may be not regular enough to ensure the boundedness of solutions. As a consequence, solutions are obtained in a class of functions with exponential integrability. An existence result of bounded solutions is also given under additional hypotheses.
LA - eng
UR - http://eudml.org/doc/195326
ER -

References

top
  1. ARONSON, D. G. - SERRIN, J., Local behavior of solutions of quasilinear parabolic equations, Arch. Rat. Mech. Anal.25 (1967), 81-122. Zbl0154.12001MR244638
  2. BLANCHARD, D. - PORRETTA, A., Nonlinear parabolic equations with natural growth terms and measure initial data, Ann. Sc. Norm. Sup. Pisa Cl. Sci. (4), 30 (2001), 583-622. Zbl1072.35089MR1896079
  3. BOCCARDO, L. - MURAT, F. - PUEL, J.-P., Existence de solutions non bornées pour certaines équations quasi-linéaires, Portugal. Math., 41, n. 1-4 (1982), 507-534. Zbl0524.35041MR766873
  4. BOCCARDO, L. - MURAT, F. - PUEL, J.-P., Existence of bounded solutions for nonlinear elliptic unilateral problems, Ann. Mat. Pura Appl., (4) 152 (1988), 183-196. Zbl0687.35042MR980979
  5. BOCCARDO, L. - MURAT, F. - PUEL, J.-P., Existence results for some quasilinear parabolic equations, Nonlinear Anal., 13 (1989), 373-392. Zbl0705.35066MR987375
  6. BOCCARDO, L. - MURAT, F. - PUEL, J.-P., L 1 estimate for some nonlinear elliptic partial differential equations and application to an existence result, SIAM J. Math. Anal. (2), 23 (1992), 326-333. Zbl0785.35033MR1147866
  7. BOCCARDO, L. - MURAT, F. - PUEL, J.-P., Résultats d'existence pour certains problémes elliptiques quasilinéaires, Ann. Sc. Norm. Sup. Pisa Cl. Sci. (4), 11 (1984), 213-235. Zbl0557.35051MR764943
  8. DALL'AGLIO, A. - DE CICCO, V. - GIACHETTI, D. - PUEL, J.-P., Existence of solutions for nonlinear elliptic equations in unbounded domains, Nonlinear Diff. Eq. and Appl., to appear. Zbl1120.35038MR2182422
  9. DALL'AGLIO, A. - GIACHETTI, D. - PUEL, J.-P., Nonlinear elliptic equations with natural growth in general domains, Ann. Mat. Pura Appl., to appear. Zbl1097.35050MR1939689
  10. DALL'AGLIO, A. - ORSINA, L., Nonlinear parabolic equations with natural growth conditions and L 1 data, Nonlin. Anal. TMA, 27, no. 1 (1996), 59-73. Zbl0861.35045MR1390712
  11. DI BENEDETTO, E., Degenerate Parabolic Equations, Springer-Verlag, New York, 1993. Zbl0794.35090
  12. DONATO, P. - GIACHETTI, D., Quasilinear elliptic equations with quadratic growth on unbounded domains, Nonlin. Anal., 10 (1986), 791-804. Zbl0602.35036MR851147
  13. FERONE, V. - MURAT, F., Nonlinear problems having natural growth in the gradient: an existence result when the source terms are small, Nonlinear Anal., 42 (2000), 1309-1326. Zbl1158.35358MR1780731
  14. FERONE, V. - POSTERARO, M. R. - RAKOTOSON, J.-M., L 1 -estimates for nonlinear elliptic problems with p-growth in the gradient, J. Ineq. Appl., 3 (1999), 109-125. Zbl0928.35060MR1733106
  15. FERONE, V. - POSTERARO, M. R. - RAKOTOSON, J.-M., Nonlinear parabolic equations with p-growth and unbounded data, C. R. Acad. Sci. Paris Sér. I Math., 328, no. 4 (1999), 291-296. Zbl0922.35075MR1675940
  16. FERONE, V. - POSTERARO, M. R. - RAKOTOSON, J.-M., Nonlinear Parabolic Problems with Critical Growth and Unbounded Data, Indiana Math. J.50, no. 3 (2001), 1201- 1215. Zblpre01780897MR1871353
  17. GRENON, N., Existence results for some quasilinear parabolic problems, Ann. Mat. Pura Appl., 4 (1993), 281-313. Zbl0806.35089MR1271423
  18. GRENON, N., Asymptotic behaviour for some quasilinear parabolic equations, Nonlinear Anal., 20 (1993), 755-766. Zbl0812.35065MR1214741
  19. LANDES, R. - MUSTONEN, V., On parabolic initial-boundary value problems with critical growth for the gradient, Ann. Inst. H. Poincaré Anal. Non Linéaire, 11 (1994), 135-158. Zbl0836.35078MR1267364
  20. LERAY, J. - LIONS, J.L., Quelques résultats de Višik sur les problèmes elliptiques non linéaires par les méthodes de Minty-Browder, Bull. Soc. Math. France, 93 (1965), 97- 107. Zbl0132.10502MR194733
  21. LIONS, J.-L., Quelques mèthodes de rèsolution des problémes aux limites non linèaires, Dunod, Gauthier-Villars, Paris, 1969. Zbl0189.40603MR259693
  22. NICOLOSI, F., Weak solutions of boundary value problems for degenerate parabolic operators in unbounded open sets. Boll. Un. Mat. Ital.6-C, no. 1 (1985), 269-278. Zbl0594.35051MR805219
  23. ORSINA, L. - PORZIO, M.M., L ( Q ) -estimate and existence of solutions for some nonlinear parabolic equations, Boll. U.M.I.6-B (1992), 631-647. Zbl0783.35026MR1191957
  24. PUEL, J.-P., A compactness theorem in quasilinear parabolic problems and application to an existence result, Nonlinear parabolic equations: qualitative properties of solutions (Rome, 1985), Pitman Res. Notes Math. Ser., 149, Longman Sci. Tech., Harlow (1987), 189-199. Zbl0655.35035MR901109
  25. SIMON, J., Compact sets in the space L p ( 0 , T ; B ) , Ann. Mat. Pura Appl. (4) 146 (1987), 65-96. Zbl0629.46031MR916688
  26. STAMPACCHIA, G., Equations elliptiques du second ordre à coefficients discontinus. Séminaire de Mathématiques Supérieures, No. 16Les Presses de l'Université de Montréal, Montrèal, Que. (1966). Zbl0151.15501MR251373

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.