Quasi-linear parabolic equations with degenerate coercivity having a quadratic gradient term

A. Dall'Aglio; D. Giachetti; C. Leone; S. Segura de León

Annales de l'I.H.P. Analyse non linéaire (2006)

  • Volume: 23, Issue: 1, page 97-126
  • ISSN: 0294-1449

How to cite

top

Dall'Aglio, A., et al. "Quasi-linear parabolic equations with degenerate coercivity having a quadratic gradient term." Annales de l'I.H.P. Analyse non linéaire 23.1 (2006): 97-126. <http://eudml.org/doc/78686>.

@article{DallAglio2006,
author = {Dall'Aglio, A., Giachetti, D., Leone, C., Segura de León, S.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {degenerate nonlinear parabolic problems; gradient term with quadratic growth; existence; regularity; bounded and unbounded solutions; distributional solutions; homogeneous Dirichlet boundary conditions},
language = {eng},
number = {1},
pages = {97-126},
publisher = {Elsevier},
title = {Quasi-linear parabolic equations with degenerate coercivity having a quadratic gradient term},
url = {http://eudml.org/doc/78686},
volume = {23},
year = {2006},
}

TY - JOUR
AU - Dall'Aglio, A.
AU - Giachetti, D.
AU - Leone, C.
AU - Segura de León, S.
TI - Quasi-linear parabolic equations with degenerate coercivity having a quadratic gradient term
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2006
PB - Elsevier
VL - 23
IS - 1
SP - 97
EP - 126
LA - eng
KW - degenerate nonlinear parabolic problems; gradient term with quadratic growth; existence; regularity; bounded and unbounded solutions; distributional solutions; homogeneous Dirichlet boundary conditions
UR - http://eudml.org/doc/78686
ER -

References

top
  1. [1] Alt H.W., Luckhaus S., Quasilinear elliptic-parabolic differential equations, Math. Z.183 (1983) 311-341. Zbl0497.35049MR706391
  2. [2] Andreu F., Mazón J.M., Segura de León S., Toledo J., Existence and uniqueness for a degenerate parabolic equation with L 1 data, Trans. Amer. Math. Soc.351 (1999) 285-306. Zbl0912.35092MR1433108
  3. [3] Aronson D.G., Serrin J., Local behavior of solutions of quasilinear parabolic equations, Arch. Rational Mech. Anal.25 (1967) 81-122. Zbl0154.12001MR244638
  4. [4] Aubin J.P., Un théorème de compacité, C. R. Acad. Sci.256 (1963) 5042-5044. Zbl0195.13002MR152860
  5. [5] Bénilan P., Boccardo L., Gallouët T., Gariepy R., Pierre M., Vázquez J.L., An L 1 theory of existence and uniqueness of solutions of nonlinear elliptic equations, Ann. Scuola Norm. Sup. Pisa22 (2) (1995) 240-273. Zbl0866.35037MR1354907
  6. [6] Blanchard D., Porretta A., Nonlinear parabolic equations with natural growth terms and measure initial data, Ann. Scuola Norm. Sup. Pisa Cl. Sci.30 (4) (2001) 583-622. Zbl1072.35089MR1896079
  7. [7] Boccardo L., Murat F., Puel J.P., Résultats d'existence pour certains problèmes elliptiques quasilinéaires, Ann. Scuola Norm. Sup. Pisa11 (1984) 213-235. Zbl0557.35051MR764943
  8. [8] Boccardo L., Murat F., Puel J.P., Existence results for some quasilinear parabolic equations, Nonlinear Anal.13 (1989) 373-392. Zbl0705.35066MR987375
  9. [9] Boccardo L., Porzio M.M., Bounded solutions for a class of quasi-linear parabolic problems with a quadratic gradient term, Progr. Nonlinear Differential Equations50 (2002) 39-48. Zbl1028.35058MR1944156
  10. [10] Boccardo L., Segura de León S., Trombetti C., Bounded and unbounded solutions for a class of quasi-linear elliptic problems with a quadratic grandient term, J. Math. Pures Appl.80 (9) (2001) 919-940. Zbl1134.35358MR1865381
  11. [11] Brezis H., Analyse fonctionnelle. Théorie et applications, Collection Mathématiques Appliquées pour la Maîtrise, Masson, Paris, 1983. Zbl0511.46001MR697382
  12. [12] Dall'Aglio A., Giachetti D., Puel J.P., Nonlinear elliptic equations with natural growth in general domains, Ann. Mat. Pura Appl.181 (2002) 407-426. Zbl1097.35050MR1939689
  13. [13] A. Dall'Aglio, D. Giachetti, J.P. Puel, Nonlinear parabolic equations with natural growth in general domains, Bull. Un. Mat. Ital., in press. Zbl1117.35035
  14. [14] Dall'Aglio A., Orsina L., Nonlinear parabolic equations with natural growth conditions and L 1 data, Nonlinear Anal.27 (1996) 59-73. Zbl0861.35045MR1390712
  15. [15] DiBenedetto E., Degenerate Parabolic Equations, Springer-Verlag, New York, 1993. Zbl0794.35090MR1230384
  16. [16] Evans L.C., Partial Differential Equations, Graduate Stud. in Math., vol. 19, American Mathematical Society, Providence, RI, 1998. Zbl0902.35002
  17. [17] Ferone V., Murat F., Nonlinear problems having natural growth in the gradient: an existence result when the source terms are small, Nonlinear Anal.42 (2000) 1309-1326. Zbl1158.35358MR1780731
  18. [18] Ferone V., Posteraro M.R., Rakotoson J.M., L 1 -estimates for nonlinear elliptic problems withp-growth in the gradient, J. Ineq. Appl.3 (1999) 109-125. Zbl0928.35060MR1733106
  19. [19] Ferone V., Posteraro M.R., Rakotoson J.M., Nonlinear parabolic equations with p-growth and unbounded data, C. R. Acad. Sci. Paris Sèr. I Math.328 (1999) 291-296. Zbl0922.35075MR1675940
  20. [20] Ferone V., Posteraro M.R., Rakotoson J.M., Nonlinear parabolic problems with critical growth and unbounded data, Indiana Univ. Math. J.50 (3) (2001) 1201-1215. Zbl1256.35025MR1871353
  21. [21] Ladyzenskaja O.A., Solonnikov V.A., Ural'ceva N.N., Linear and Quasi-Linear Equations of Parabolic Type, Transl. Math. Monographs, vol. 23, Amer. Math. Soc., Providence, RI, 1968. Zbl0174.15403MR241821
  22. [22] Landes R., On the existence of weak solutions for quasilinear parabolic boundary value problems, Proc. Roy. Soc. Edinburgh Sect. A89 (1981) 217-237. Zbl0493.35054MR635759
  23. [23] Landes R., Mustonen V., On parabolic initial-boundary value problems with critical growth for the gradient, Ann. Inst. H. Poincaré Anal. Non Linéaire11 (1994) 135-158. Zbl0836.35078MR1267364
  24. [24] Mokrane A., Existence of bounded solutions of some nonlinear parabolic equations, Proc. Roy. Soc. Edinburgh Sect. A107 (3–4) (1987) 313-326. Zbl0649.35044MR924524
  25. [25] Orsina L., Porzio M.M., L Q -estimate and existence of solutions for some nonlinear parabolic equations, Boll. Un. Math. Ital. B6 (1992) 631-647. Zbl0783.35026MR1191957
  26. [26] Porretta A., Regularity for entropy solutions of a class of parabolic equations with non regular initial datum, Dynamic Systems Appl.7 (1998) 53-71. Zbl0899.35049MR1612029
  27. [27] A. Porretta, S. Segura de León, Nonlinear elliptic equations having a gradient term with natural growth, Preprint. Zbl1158.35364
  28. [28] Prignet A., Existence and uniqueness of entropy solution of parabolic problems with L 1 data, Nonlinear Anal.28 (12) (1997) 1943-1954. Zbl0909.35075MR1436364
  29. [29] Simon J., Compact sets in the space L p ( 0 , T ; B ) , Ann. Mat. Pura Appl.146 (1987) 65-96. Zbl0629.46031MR916688

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.