On blow-up and asymptotic behavior of solutions for some semilinear parabolic systems of second order
Bollettino dell'Unione Matematica Italiana (2000)
- Volume: 3-B, Issue: 2, page 375-409
- ISSN: 0392-4041
Access Full Article
topAbstract
topHow to cite
topBoni, Théodore K.. "On blow-up and asymptotic behavior of solutions for some semilinear parabolic systems of second order." Bollettino dell'Unione Matematica Italiana 3-B.2 (2000): 375-409. <http://eudml.org/doc/195336>.
@article{Boni2000,
author = {Boni, Théodore K.},
journal = {Bollettino dell'Unione Matematica Italiana},
keywords = {nonlinear boundary conditions; global existence; blow-up set},
language = {eng},
month = {6},
number = {2},
pages = {375-409},
publisher = {Unione Matematica Italiana},
title = {On blow-up and asymptotic behavior of solutions for some semilinear parabolic systems of second order},
url = {http://eudml.org/doc/195336},
volume = {3-B},
year = {2000},
}
TY - JOUR
AU - Boni, Théodore K.
TI - On blow-up and asymptotic behavior of solutions for some semilinear parabolic systems of second order
JO - Bollettino dell'Unione Matematica Italiana
DA - 2000/6//
PB - Unione Matematica Italiana
VL - 3-B
IS - 2
SP - 375
EP - 409
LA - eng
KW - nonlinear boundary conditions; global existence; blow-up set
UR - http://eudml.org/doc/195336
ER -
References
top- AMANN, H., Dynamic theory of quasilinear parabolic systems III global existence, Math. Z., 202, 2 (1989), 219-254. Zbl0702.35125MR1013086
- BONI, T. K., Sur l'explosion et le comportement asymptotique de la solution d'une équation parabolique semi-linéaire du second ordre, C. R. Acad. Paris, t. 326, Série I (1998), 317-322. Zbl0913.35069MR1648453
- DENG, K., Global existence and blow up for a system of heat equations with a nonlinear boundary conditions, Math. Meth. in the Appl. Sci., 18 (1995), 307-315. Zbl0822.35074MR1320001
- ESCOBEDO, M.- HERRERO, M. A., A semilinear parabolic system in a bounded domain, Ann. Mat. pura applicata, (IV), Vol. CLXV (1993), 315-336. Zbl0806.35088MR1271424
- ESCOBEDO, M.- LEVINE, H. A., Critical blow up and global existence for a weakly coupled system of reaction-diffusion equations, Arch. Rational Mech. Anal., 129 (1995), 47-100. Zbl0822.35068MR1328471
- ESCHER, J., Global existence and nonexistance for parabolic systems with nonlinear boundary conditions, Math. Ann., 284 (1989), 285-305. Zbl0652.35065MR1000112
- GANG, L.- SLEEMAN, B. D., Non-existence of global solutions to systems of semi-linear parabolic equations, Jour. of Diff. Equat., 104 (1993), 147-168. Zbl0816.35060MR1224124
- HOLLAND, C. J., Limiting behavior of a class of nonlinear reaction diffusion equations, Quaterly of Applied Mathematics, 3, Vol. XL (1982), 293-296. Zbl0506.35059MR678200
- HENRY, D., Geometric theory of semilinear parabolic equations, Lecture Notes in Mathematics, vol. 840, Springer (1981). Zbl0456.35001MR610244
- LEVINE, H. A. and PAYNE, L. E., Nonexistence theorems for the heat equation with nonlinear boundary conditions and for the porous medium equation backward in time, Jour. of Diff. Equat., 16 (1974), 319-334. Zbl0285.35035MR470481
- PROTTER, M. H.- WEINBERGER, H. F., Maximum principles in differential equations, Prentice Hall, Englewood Cliffs, NJ (1967). Zbl0153.13602MR219861
- ROSSI, J.- WOLANSKI, N., Blow-up vs. global existence for a semilinear reactiondiffusion system in a bounded domain, Commun. in PDE., 20 (11 and 12), (1995), 1991-2004. Zbl0851.35064MR1361728
- WALTER, W., Differential- und integral-ungleichungen, Springer, Berlin (1964). MR172076
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.