Dynamic Theory of Quasilinear Parbolic Systems. III. Global Existence.
Mathematische Zeitschrift (1989)
- Volume: 202, Issue: 2, page 219-250
- ISSN: 0025-5874; 1432-1823
Access Full Article
topHow to cite
topAmann, Herbert. "Dynamic Theory of Quasilinear Parbolic Systems. III. Global Existence.." Mathematische Zeitschrift 202.2 (1989): 219-250. <http://eudml.org/doc/174087>.
@article{Amann1989,
author = {Amann, Herbert},
journal = {Mathematische Zeitschrift},
keywords = {a priori -bounds; a priori -bounds; unique global solution},
number = {2},
pages = {219-250},
title = {Dynamic Theory of Quasilinear Parbolic Systems. III. Global Existence.},
url = {http://eudml.org/doc/174087},
volume = {202},
year = {1989},
}
TY - JOUR
AU - Amann, Herbert
TI - Dynamic Theory of Quasilinear Parbolic Systems. III. Global Existence.
JO - Mathematische Zeitschrift
PY - 1989
VL - 202
IS - 2
SP - 219
EP - 250
KW - a priori -bounds; a priori -bounds; unique global solution
UR - http://eudml.org/doc/174087
ER -
Citations in EuDML Documents
top- Vladimir Shelukhin, A degenerate parabolic system for three-phase flows in porous media
- Théodore K. Boni, On blow-up and asymptotic behavior of solutions for some semilinear parabolic systems of second order
- Herbert Amann, Highly degenerate quasilinear parabolic systems
- D. Wrzosek, Volume Filling Effect in Modelling Chemotaxis
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.