Logiche modali con la proprietà del punto fisso

L. Sacchetti

Bollettino dell'Unione Matematica Italiana (1999)

  • Volume: 2-B, Issue: 2, page 279-290
  • ISSN: 0392-4041

Abstract

top
We introduce various kinds of fixed-point properties for modal logics, and we classify the most prominent systems according to these. Our goal is to do a first step towards a complete characterization of provability logics of (possibly non standard) derivability predicates for Peano Arithmetic.

How to cite

top

Sacchetti, L.. "Logiche modali con la proprietà del punto fisso." Bollettino dell'Unione Matematica Italiana 2-B.2 (1999): 279-290. <http://eudml.org/doc/195361>.

@article{Sacchetti1999,
author = {Sacchetti, L.},
journal = {Bollettino dell'Unione Matematica Italiana},
keywords = {modal logic; fixed-point properties; provability logics; derivability predicates for Peano Arithmetic},
language = {ita},
month = {6},
number = {2},
pages = {279-290},
publisher = {Unione Matematica Italiana},
title = {Logiche modali con la proprietà del punto fisso},
url = {http://eudml.org/doc/195361},
volume = {2-B},
year = {1999},
}

TY - JOUR
AU - Sacchetti, L.
TI - Logiche modali con la proprietà del punto fisso
JO - Bollettino dell'Unione Matematica Italiana
DA - 1999/6//
PB - Unione Matematica Italiana
VL - 2-B
IS - 2
SP - 279
EP - 290
LA - ita
KW - modal logic; fixed-point properties; provability logics; derivability predicates for Peano Arithmetic
UR - http://eudml.org/doc/195361
ER -

References

top
  1. BELLISSIMA, F., Atoms in modal algebras, Zeitscr. f. math. Logik un Grundlagen d.Math., Bd. 30 (1984), 303-312. Zbl0562.03037MR760067
  2. BERNARDI, C., The uniquennes of the fixed point theorem in every diagonalizable algebra (The algebraization of theories which express Theor. VIII), Studia Logica, 35 (1976), 335-343. Zbl0345.02020MR460115
  3. BERNARDI, C., The fixed point theorem for the diagonalizable algebras (The algebraization of theories which express Theor. III), Studia Logica, 34 (1975), 239-251. Zbl0318.02031MR460110
  4. BOOLOS, G.- SAMBIN, G., An incomplete system of modal logic, J. Philosophical Logic, 14 (1985), 351-358. Zbl0589.03005MR816240
  5. FEFERMAN, S., The Arithmetization of metamathematics in a general setting, Fund. Math., 49 (1960). Zbl0095.24301MR147397
  6. HALMOS, P. R., Algebraic Logic, Chelsea Publishing Company, New York (1962). Zbl0101.01101MR131961
  7. HUGHES, G. E.- CRESSWELL, M. J., Guida alla logica modale, CLUEB, Bologna (1990). 
  8. MAGARI, R., The diagonalizable algebras, Boll. Un. Mat. Ital. (4), 12 (1975), 321-331. Zbl0352.08009MR460109
  9. MAGARI, R., Primi risulati sulla varietà di Boolos, Boll. Un. Mat. Ital., (6) 1-B (1982), 359-367. Zbl0487.03039MR654940
  10. MONTAGNA, F., On the diagonalizable algebra of Peano Arithmetic, Boll. Un. Mat. Ital. (5), 16-B (1979), 795-812. Zbl0419.08010MR553798
  11. SAMBIN, G., An effective fixed point theorem in intutionistic diagonalizable algebras (The algebraization of theories which express Theor. IX), Studia Logica, 35 (1976), 345-361. Zbl0357.02028MR460116
  12. SMORYNSKY, C., Self-Reference and Modal Logic, Springer-Verlag, New York (1985). Zbl0596.03001MR807778
  13. VISSER, A., Peano's Smart Children (a provability logical study of systems with built-in consistency), Logic Group, Preprint Series No. 14; Departement of Philosophy, University of Utrecht. Zbl0686.03033

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.