Adaptive convex optimization in Banach spaces: a multilevel approach
Bollettino dell'Unione Matematica Italiana (2003)
- Volume: 6-B, Issue: 2, page 263-287
- ISSN: 0392-4041
Access Full Article
topAbstract
topHow to cite
topReferences
top- BARINKA, A.- BARSCH, T.- CHARTON, PH.- COHEN, A.- DAHLKE, S.- DAHMEN, W.- URBAN, K., Adaptive wavelet schemes for elliptic problems - implementation and numerical experiments, SIAM J. Sci. Comput., 23 (2001), 910-939. Zbl1016.65090MR1860970
- BERNARDI, C.- MADAY, Y., Spectral Methods, pp. 209-486 in Handbook of Numerical Analysis, Vol. V (Ph.G. Ciarlet and J.L. Lions, eds.), North Holland, Amsterdam, 1997. MR1470226
- BERRONE, S.- EMMEL, L., A realization of a wavelet Galerkin method on non-trivial domains, Math. Models Meth. Appl. Sci., 12 (2002), 1525-1554. Zbl1022.65127MR1938955
- BERTOLUZZA, S., A posteriori error estimates for the wavelet Galerkin method, Appl. Math. Lett., 8 (1995), 1-6. Zbl0835.65121MR1356289
- BERTOLUZZA, S.- MAZET, S.- VERANI, M., A nonlinear Richardson algorithm for the solution of elliptic PDE's, Pubbl. IAN-CNR n. 1227, Pavia (2001). Zbl1051.65112
- BERTOLUZZA, S.- VERANI, M., Convergence of a non-linear wavelet algorithm for the solution of PDE's, Pubbl. IAN-CNR n. 1205, Pavia (2001), to appear in Appl. Math. Lett. Zbl1020.65077MR1938199
- BINEV, S.- DAHMEN, W.- DEVORE, R. A., Adaptive finite element methods with convergence rates, IGPM Report No. 219, RWTH Aachen, June 2002. Zbl1063.65120
- CANUTO, C.- CRAVERO, I., A wavelet-based adaptive finite element method for the advection-diffusion equations, Math. Models Meths. Appl. Sci., 7 (1997), 265-289. Zbl0872.65099MR1440609
- CANUTO, C.- HUSSAINI, M. Y.- QUARTERONI, A.- ZANG, T. A., Spectral Methods in Fluid Dynamics, Springer, New York, 1990. Zbl0658.76001MR917480
- CANUTO, C.- TABACCO, A.- URBAN, K., The Wavelet Element Method Part I: construction and analysis, Appl. Comput. Harm. Anal., 6 (1999), 1-52. Zbl0949.42024MR1664902
- CANUTO, C.- TABACCO, A.- URBAN, K., The Wavelet Element Method Part II: realization and additional features in 2D and 3D, Appl. Comp. Harm. Anal., 8 (2000), 123-165. Zbl0951.42016MR1743533
- CANUTO, C.- URBAN, K., Adaptive optimization of convex functionals in Banach spaces, in preparation. Zbl1081.65053
- CÉA, J., Optimisation, théorie et algorithmes, Dunod, Paris, 1971. Zbl0211.17402MR298892
- CIARLET, PH. G., Basic Error Estimates for Elliptic Problems, pp. 17-352 in Handbook of Numerical Analysis, Vol. II (Ph. G. Ciarlet and J. L. Lions, eds.), North Holland, Amsterdam, 1991. Zbl0875.65086MR1115237
- COHEN, A., Wavelet Methods in Numerical Analysis, pp. 417-711 in Handbook of Numerical Analysis, Vol. VII (Ph.G. Ciarlet and J. L. Lions, eds.), North Holland, Amsterdam, 2000. Zbl0976.65124MR1804747
- COHEN, A.- DAHMEN, W.- DEVORE, R. A., Adaptive wavelet methods for elliptic operator equations - convergence rates, Math. Comput., 70 (2001), 27-75. Zbl0980.65130MR1803124
- COHEN, A.- DAHMEN, W.- DEVORE, R. A., Adaptive wavelet methods II - beyond the elliptic case, Found. Comput. Math., 2 (2002), 203-245. Zbl1025.65056MR1907380
- COHEN, A.- DAHMEN, W.- DEVORE, R. A., Adaptive Wavelet Schemes for Nonlinear Variational Problems, IGPM Report No. 221, RWTH Aachen, June 2002. Zbl1057.65031
- COHEN, A.- DAUBECHIES, I.- FEAUVEAU, J., Biorthogonal bases of compactly supported wavelet, Comm. Pure Appl. Math., 45 (1992), 485-560. Zbl0776.42020MR1162365
- COHEN, A.- DAUBECHIES, I.- VIAL, P., Wavelets on the interval and fast wavelet transform, Appl. Comp. Harm. Anal., 1 (1993), 54-81. Zbl0795.42018MR1256527
- DAHLKE, S., Besov regularity for elliptic boundary value problems on polygonal domains, Appl. Math. Lett., 12 (1999), 31-36. Zbl0940.35064MR1751404
- DAHLKE, S.- DAHMEN, W.- HOCHMUTH, R.- SCHNEIDER, R., Stable multiscale bases and local error estimation for elliptic problems, Appl. Numer. Math., 23 (1997), 21-48. Zbl0872.65098MR1438079
- DAHLKE, S.- DAHMEN, W.- URBAN, K., Adaptive wavelet methods for saddle point problems - optimal convergence rates, IGPM Report No. 204, RWTH Aachen, 2001, to appear in SIAM J. Numer. Anal. Zbl1024.65101MR1951893
- DAHLKE, S.- DEVORE, R. A., Besov regularity for elliptic boundary value problems, Commun. Partial Diff. Eqns., 22 (1997), 1-16. Zbl0883.35018MR1434135
- DAHMEN, W.- KUNOTH, A.- URBAN, K., Biorthogonal spline-wavelets on the interval - Stability and moment conditions, Appl. Comp. Harm. Anal., 6 (1999), 132-196. Zbl0922.42021MR1676771
- DAHMEN, W.- SCHNEIDER, R., Wavelets on manifolds I. Construction and domain decompositions, SIAM J. Math. Anal., 31 (1999), 184-230. Zbl0955.42025MR1742299
- DAHMEN, W.- SCHNEIDER, R., Composite wavelet bases for operator equations, Math. Comp., 68 (1999), 1533-1567. Zbl0932.65148MR1648379
- DAUBECHIES, I., Ten Lectures on Wavelets, CBMS-NSF Series in Applied Mathematics61, SIAM, Philadelphia, 1992. Zbl0776.42018MR1162107
- DEVORE, R. A., Nonlinear Approximation, pp. 51-150 in Acta Numerica 1998, Cambridge University Press, Cambridge, 1998. Zbl0931.65007MR1689432
- DEVORE, R. A.- LUCIER, B. J., Wavelets, pp. 1-56 in Acta Numerica 1992, Cambridge University Press, Cambridge, 1992. Zbl0766.65009MR1165722
- DÖRFLER, W., A convergent adaptive algorithm for Poisson's equation, SIAM J. Numer. Anal., 33 (1996), 1106-1124. Zbl0854.65090MR1393904
- GRIVET TALOCIA, S.- TABACCO, A., Wavelets on the interval with optimal localization, Math. Models Meth. Appl. Sci., 10 (2000), 441-462. Zbl1012.42026MR1753120
- HAAR, A., Zur Theorie der orthogonalen Funktionen-Systeme, Math. Ann., 69 (1910), 331-371. MR1511592JFM41.0469.03
- MORIN, P.- NOCHETTO, R.- SIEBERT, K., Data oscillation and convergence of adaptive FEM, SIAM J. Numer. Anal., 38 (2000), 466-488. Zbl0970.65113MR1770058
- SCHWAB, C., - and -Finite Element Methods, Clarendon Press, Oxford, 1998. Zbl0910.73003MR1695813
- TEMLYAKOV, V. N., The best -term approximation and greedy algorithms, Adv. Comput. Math., 8 (1998), pp. 249-265. Zbl0905.65063MR1628182
- VERFÜRTH, R., A Review of A Posteriori Error Estimation and Adaptive Mesh Refinement Techniques, Wiley-Teubner, Chichester, 1996. Zbl0853.65108