Adaptive convex optimization in Banach spaces: a multilevel approach

Claudio Canuto

Bollettino dell'Unione Matematica Italiana (2003)

  • Volume: 6-B, Issue: 2, page 263-287
  • ISSN: 0392-4041

Abstract

top
This is mainly a review paper, concerned with some applications of the concept of Nonlinear Approximation to adaptive convex minimization. At first, we recall the basic ideas and we compare linear to nonlinear approximation for three relevant families of bases used in practice: Fourier bases, finite element bases, wavelet bases. Next, we show how nonlinear approximation can be used to design rigorously justified and optimally efficient adaptive methods to solve abstract minimization problems in Banach spaces, using either wavelet or finite element bases. In particular, a wavelet adaptive steepest-descent algorithm is presented and investigated.

How to cite

top

Canuto, Claudio. "Adaptive convex optimization in Banach spaces: a multilevel approach." Bollettino dell'Unione Matematica Italiana 6-B.2 (2003): 263-287. <http://eudml.org/doc/195377>.

@article{Canuto2003,
abstract = {This is mainly a review paper, concerned with some applications of the concept of Nonlinear Approximation to adaptive convex minimization. At first, we recall the basic ideas and we compare linear to nonlinear approximation for three relevant families of bases used in practice: Fourier bases, finite element bases, wavelet bases. Next, we show how nonlinear approximation can be used to design rigorously justified and optimally efficient adaptive methods to solve abstract minimization problems in Banach spaces, using either wavelet or finite element bases. In particular, a wavelet adaptive steepest-descent algorithm is presented and investigated.},
author = {Canuto, Claudio},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {6},
number = {2},
pages = {263-287},
publisher = {Unione Matematica Italiana},
title = {Adaptive convex optimization in Banach spaces: a multilevel approach},
url = {http://eudml.org/doc/195377},
volume = {6-B},
year = {2003},
}

TY - JOUR
AU - Canuto, Claudio
TI - Adaptive convex optimization in Banach spaces: a multilevel approach
JO - Bollettino dell'Unione Matematica Italiana
DA - 2003/6//
PB - Unione Matematica Italiana
VL - 6-B
IS - 2
SP - 263
EP - 287
AB - This is mainly a review paper, concerned with some applications of the concept of Nonlinear Approximation to adaptive convex minimization. At first, we recall the basic ideas and we compare linear to nonlinear approximation for three relevant families of bases used in practice: Fourier bases, finite element bases, wavelet bases. Next, we show how nonlinear approximation can be used to design rigorously justified and optimally efficient adaptive methods to solve abstract minimization problems in Banach spaces, using either wavelet or finite element bases. In particular, a wavelet adaptive steepest-descent algorithm is presented and investigated.
LA - eng
UR - http://eudml.org/doc/195377
ER -

References

top
  1. BARINKA, A.- BARSCH, T.- CHARTON, PH.- COHEN, A.- DAHLKE, S.- DAHMEN, W.- URBAN, K., Adaptive wavelet schemes for elliptic problems - implementation and numerical experiments, SIAM J. Sci. Comput., 23 (2001), 910-939. Zbl1016.65090MR1860970
  2. BERNARDI, C.- MADAY, Y., Spectral Methods, pp. 209-486 in Handbook of Numerical Analysis, Vol. V (Ph.G. Ciarlet and J.L. Lions, eds.), North Holland, Amsterdam, 1997. MR1470226
  3. BERRONE, S.- EMMEL, L., A realization of a wavelet Galerkin method on non-trivial domains, Math. Models Meth. Appl. Sci., 12 (2002), 1525-1554. Zbl1022.65127MR1938955
  4. BERTOLUZZA, S., A posteriori error estimates for the wavelet Galerkin method, Appl. Math. Lett., 8 (1995), 1-6. Zbl0835.65121MR1356289
  5. BERTOLUZZA, S.- MAZET, S.- VERANI, M., A nonlinear Richardson algorithm for the solution of elliptic PDE's, Pubbl. IAN-CNR n. 1227, Pavia (2001). Zbl1051.65112
  6. BERTOLUZZA, S.- VERANI, M., Convergence of a non-linear wavelet algorithm for the solution of PDE's, Pubbl. IAN-CNR n. 1205, Pavia (2001), to appear in Appl. Math. Lett. Zbl1020.65077MR1938199
  7. BINEV, S.- DAHMEN, W.- DEVORE, R. A., Adaptive finite element methods with convergence rates, IGPM Report No. 219, RWTH Aachen, June 2002. Zbl1063.65120
  8. CANUTO, C.- CRAVERO, I., A wavelet-based adaptive finite element method for the advection-diffusion equations, Math. Models Meths. Appl. Sci., 7 (1997), 265-289. Zbl0872.65099MR1440609
  9. CANUTO, C.- HUSSAINI, M. Y.- QUARTERONI, A.- ZANG, T. A., Spectral Methods in Fluid Dynamics, Springer, New York, 1990. Zbl0658.76001MR917480
  10. CANUTO, C.- TABACCO, A.- URBAN, K., The Wavelet Element Method Part I: construction and analysis, Appl. Comput. Harm. Anal., 6 (1999), 1-52. Zbl0949.42024MR1664902
  11. CANUTO, C.- TABACCO, A.- URBAN, K., The Wavelet Element Method Part II: realization and additional features in 2D and 3D, Appl. Comp. Harm. Anal., 8 (2000), 123-165. Zbl0951.42016MR1743533
  12. CANUTO, C.- URBAN, K., Adaptive optimization of convex functionals in Banach spaces, in preparation. Zbl1081.65053
  13. CÉA, J., Optimisation, théorie et algorithmes, Dunod, Paris, 1971. Zbl0211.17402MR298892
  14. CIARLET, PH. G., Basic Error Estimates for Elliptic Problems, pp. 17-352 in Handbook of Numerical Analysis, Vol. II (Ph. G. Ciarlet and J. L. Lions, eds.), North Holland, Amsterdam, 1991. Zbl0875.65086MR1115237
  15. COHEN, A., Wavelet Methods in Numerical Analysis, pp. 417-711 in Handbook of Numerical Analysis, Vol. VII (Ph.G. Ciarlet and J. L. Lions, eds.), North Holland, Amsterdam, 2000. Zbl0976.65124MR1804747
  16. COHEN, A.- DAHMEN, W.- DEVORE, R. A., Adaptive wavelet methods for elliptic operator equations - convergence rates, Math. Comput., 70 (2001), 27-75. Zbl0980.65130MR1803124
  17. COHEN, A.- DAHMEN, W.- DEVORE, R. A., Adaptive wavelet methods II - beyond the elliptic case, Found. Comput. Math., 2 (2002), 203-245. Zbl1025.65056MR1907380
  18. COHEN, A.- DAHMEN, W.- DEVORE, R. A., Adaptive Wavelet Schemes for Nonlinear Variational Problems, IGPM Report No. 221, RWTH Aachen, June 2002. Zbl1057.65031
  19. COHEN, A.- DAUBECHIES, I.- FEAUVEAU, J., Biorthogonal bases of compactly supported wavelet, Comm. Pure Appl. Math., 45 (1992), 485-560. Zbl0776.42020MR1162365
  20. COHEN, A.- DAUBECHIES, I.- VIAL, P., Wavelets on the interval and fast wavelet transform, Appl. Comp. Harm. Anal., 1 (1993), 54-81. Zbl0795.42018MR1256527
  21. DAHLKE, S., Besov regularity for elliptic boundary value problems on polygonal domains, Appl. Math. Lett., 12 (1999), 31-36. Zbl0940.35064MR1751404
  22. DAHLKE, S.- DAHMEN, W.- HOCHMUTH, R.- SCHNEIDER, R., Stable multiscale bases and local error estimation for elliptic problems, Appl. Numer. Math., 23 (1997), 21-48. Zbl0872.65098MR1438079
  23. DAHLKE, S.- DAHMEN, W.- URBAN, K., Adaptive wavelet methods for saddle point problems - optimal convergence rates, IGPM Report No. 204, RWTH Aachen, 2001, to appear in SIAM J. Numer. Anal. Zbl1024.65101MR1951893
  24. DAHLKE, S.- DEVORE, R. A., Besov regularity for elliptic boundary value problems, Commun. Partial Diff. Eqns., 22 (1997), 1-16. Zbl0883.35018MR1434135
  25. DAHMEN, W.- KUNOTH, A.- URBAN, K., Biorthogonal spline-wavelets on the interval - Stability and moment conditions, Appl. Comp. Harm. Anal., 6 (1999), 132-196. Zbl0922.42021MR1676771
  26. DAHMEN, W.- SCHNEIDER, R., Wavelets on manifolds I. Construction and domain decompositions, SIAM J. Math. Anal., 31 (1999), 184-230. Zbl0955.42025MR1742299
  27. DAHMEN, W.- SCHNEIDER, R., Composite wavelet bases for operator equations, Math. Comp., 68 (1999), 1533-1567. Zbl0932.65148MR1648379
  28. DAUBECHIES, I., Ten Lectures on Wavelets, CBMS-NSF Series in Applied Mathematics61, SIAM, Philadelphia, 1992. Zbl0776.42018MR1162107
  29. DEVORE, R. A., Nonlinear Approximation, pp. 51-150 in Acta Numerica 1998, Cambridge University Press, Cambridge, 1998. Zbl0931.65007MR1689432
  30. DEVORE, R. A.- LUCIER, B. J., Wavelets, pp. 1-56 in Acta Numerica 1992, Cambridge University Press, Cambridge, 1992. Zbl0766.65009MR1165722
  31. DÖRFLER, W., A convergent adaptive algorithm for Poisson's equation, SIAM J. Numer. Anal., 33 (1996), 1106-1124. Zbl0854.65090MR1393904
  32. GRIVET TALOCIA, S.- TABACCO, A., Wavelets on the interval with optimal localization, Math. Models Meth. Appl. Sci., 10 (2000), 441-462. Zbl1012.42026MR1753120
  33. HAAR, A., Zur Theorie der orthogonalen Funktionen-Systeme, Math. Ann., 69 (1910), 331-371. MR1511592JFM41.0469.03
  34. MORIN, P.- NOCHETTO, R.- SIEBERT, K., Data oscillation and convergence of adaptive FEM, SIAM J. Numer. Anal., 38 (2000), 466-488. Zbl0970.65113MR1770058
  35. SCHWAB, C., p - and h p -Finite Element Methods, Clarendon Press, Oxford, 1998. Zbl0910.73003MR1695813
  36. TEMLYAKOV, V. N., The best m -term approximation and greedy algorithms, Adv. Comput. Math., 8 (1998), pp. 249-265. Zbl0905.65063MR1628182
  37. VERFÜRTH, R., A Review of A Posteriori Error Estimation and Adaptive Mesh Refinement Techniques, Wiley-Teubner, Chichester, 1996. Zbl0853.65108

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.