Classification of initial data for the Riccati equation
Bollettino dell'Unione Matematica Italiana (2002)
- Volume: 5-B, Issue: 2, page 511-525
- ISSN: 0392-4041
Access Full Article
topAbstract
topHow to cite
topChernyavskaya, N., and Shuster, L.. "Classification of initial data for the Riccati equation." Bollettino dell'Unione Matematica Italiana 5-B.2 (2002): 511-525. <http://eudml.org/doc/195415>.
@article{Chernyavskaya2002,
abstract = {We consider a Cauchy problem $$y'(x)+y^\{2\}(x)= q(x),\qquad y(x)|\_\{x=x\_\{0\}\}=y\_\{0\}$$ where $x_\{0\}$ , $y_\{0\}\in \mathbb\{R\}$ and $q(x)\in L_\{1\}^\{\text\{loc\}\}(R)$ is a non-negative function satisfying the condition: $$\int\_\{-\infty\}^\{x\} q(t)\, dt> 0, \quad \int\_\{x\}^\{\infty\} q(t) \, dt> 0 \qquad \text\{ for \} x\in \mathbb\{R\}.$$ We obtain the conditions under which $y(x)$ can be continued to all of $\mathbb\{R\}$. This depends on $x_\{0\}$ , $y_\{0\}$ and the properties of $q(x)$.},
author = {Chernyavskaya, N., Shuster, L.},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {6},
number = {2},
pages = {511-525},
publisher = {Unione Matematica Italiana},
title = {Classification of initial data for the Riccati equation},
url = {http://eudml.org/doc/195415},
volume = {5-B},
year = {2002},
}
TY - JOUR
AU - Chernyavskaya, N.
AU - Shuster, L.
TI - Classification of initial data for the Riccati equation
JO - Bollettino dell'Unione Matematica Italiana
DA - 2002/6//
PB - Unione Matematica Italiana
VL - 5-B
IS - 2
SP - 511
EP - 525
AB - We consider a Cauchy problem $$y'(x)+y^{2}(x)= q(x),\qquad y(x)|_{x=x_{0}}=y_{0}$$ where $x_{0}$ , $y_{0}\in \mathbb{R}$ and $q(x)\in L_{1}^{\text{loc}}(R)$ is a non-negative function satisfying the condition: $$\int_{-\infty}^{x} q(t)\, dt> 0, \quad \int_{x}^{\infty} q(t) \, dt> 0 \qquad \text{ for } x\in \mathbb{R}.$$ We obtain the conditions under which $y(x)$ can be continued to all of $\mathbb{R}$. This depends on $x_{0}$ , $y_{0}$ and the properties of $q(x)$.
LA - eng
UR - http://eudml.org/doc/195415
ER -
References
top- BELLMAN, R.- KALABA, R., Quasilinearization and Nonlinear Boundary-Value Problems, New York, 1965. Zbl0139.10702MR178571
- CHERNYAVSKAYA, N.- SHUSTER, L., Estimates for the Green function of a general Sturm-Liouville operator and their applications, Proc. Amer. Math. Soc., 127, no. 5 (1999), 1413-1426. Zbl0918.34032MR1625725
- CHERNYAVSKAYA, N.- SHUSTER, L., Asymptotics on the diagonal of the Green function of a Sturm-Louiville operator and its applications, J. London Math. Soc., 61 (2) (2000), 506-530. Zbl0959.34019MR1760676
- CHERNYAVSKAYA, N.- SHUSTER, L., On the WKB-method, Different. Uravnenija25, 10 (1989), 1826-1829. Zbl0702.34053MR1025660
- CHERNYAVSKAYA, N.- SHUSTER, L., Estimates for Green's function of the Sturm-Liouville operator, J. Diff. Eq., 111 (1994), 410-421. Zbl0852.34023MR1284420
- CHERNYAVSKAYA, N.- SHUSTER, L., Weight summability of solutions of the Sturm-Liouville equation, J. Diff. Eq., 151, 456-473, 1999 preprint AMSPPJ0128-34-003 (1998). Zbl0921.34030MR1669697
- DAVIES, E. B.- HARRELL, E. M., Conformally flat Riemannian metrics, Schrödinger operators and semiclassical approximation, J. Diff. Eq., 66, 2 (1987), 165-188. Zbl0616.34020MR871993
- GOURSAT, E., A Course in Mathematical Analysis, Vol. II, Part 2, Differential Equations, New York, 1959. Zbl0144.04501
- HARTMAN, P., Ordinary Differential Equations, Wiley, New York, 1964. Zbl0125.32102MR171038
- MYNBAEV, K.- OTELBAEV, M., Weighted Fuctional Spaces and the Spectrum of Differential Operators, Nauka, Moscow, 1988. Zbl0651.46037MR950172
- STEKLOV, W. A., Sur une méthode nouvelle pour résoudre plusiers problèmes sur le développement d'une fonction arbitraire en séries infinies, Comptes Rendus, Paris, 144 (1907), 1329-1332. JFM38.0437.02
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.