Integral Inequalities for the Principal Fundamental System of Solutions of a Homogeneous Sturm-Liouville Equation

N. A. Chernyavskaya; L. A. Shuster

Bollettino dell'Unione Matematica Italiana (2012)

  • Volume: 5, Issue: 2, page 423-448
  • ISSN: 0392-4041

Abstract

top
We consider the equation - y ′′ ( x ) + q ( x ) y ( x ) = f ( x ) , x , where f L p ( ) , p [ 1 , ] ( L ( ) := C ( ) ) and 0 q L 1 loc ( ) ; a > 0 : inf x x - a x + a q ( t ) d t > 0 , (Condition (2) guarantees correct solvability of (1) in class L p ( ) , p [ 1 , ] .) Let y be a solution of (1) in class L p ( ) , p [ 1 , ] , and θ some non-negative and continuous function in . We find minimal additional requirements to θ under which for a given p [ 1 , ] there exists an absolute positive constant c ( p ) such that the following inequality holds: sup x θ ( x ) | y ( x ) | c ( p ) f L p ( )    f L p ( ) .

How to cite

top

Chernyavskaya, N. A., and Shuster, L. A.. "Integral Inequalities for the Principal Fundamental System of Solutions of a Homogeneous Sturm-Liouville Equation." Bollettino dell'Unione Matematica Italiana 5.2 (2012): 423-448. <http://eudml.org/doc/290967>.

@article{Chernyavskaya2012,
abstract = {We consider the equation \begin\{equation*\} \tag\{1\} -y''(x) + q(x)y(x) = f(x), \qquad x \in \mathbb\{R\}, \end\{equation*\} where $f \in L_\{p\}(\mathbb\{R\})$, $p \in [1,\infty]$ ($L_\{\infty\}(\mathbb\{R\}) := C(\mathbb\{R\})$) and \begin\{equation*\} \tag\{2\} 0 \leq q \in L\_\{1\}^\{\text\{loc\}\}(\mathbb\{R\}); \qquad \exists a > 0 : \inf\_\{x \in \mathbb\{R\}\} \int\_\{x-a\}^\{x+a\} q(t) \, dt > 0, \end\{equation*\} (Condition (2) guarantees correct solvability of (1) in class $L_\{p\}(\mathbb\{R\})$, $p \in [1,\infty]$.) Let $y$ be a solution of (1) in class $L_\{p\}(\mathbb\{R\})$, $p \in [1,\infty]$, and $\theta$ some non-negative and continuous function in $\mathbb\{R\}$. We find minimal additional requirements to $\theta$ under which for a given $p \in [1,\infty]$ there exists an absolute positive constant $c(p)$ such that the following inequality holds: \begin\{equation*\} \sup\_\{x \in \mathbb\{R\}\} \theta(x)|y(x)| \leq c(p) \|f\|\_\{L\_\{p\}(\mathbb\{R\})\} \qquad \forall f \in L\_\{p\}(\mathbb\{R\}). \end\{equation*\}},
author = {Chernyavskaya, N. A., Shuster, L. A.},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {6},
number = {2},
pages = {423-448},
publisher = {Unione Matematica Italiana},
title = {Integral Inequalities for the Principal Fundamental System of Solutions of a Homogeneous Sturm-Liouville Equation},
url = {http://eudml.org/doc/290967},
volume = {5},
year = {2012},
}

TY - JOUR
AU - Chernyavskaya, N. A.
AU - Shuster, L. A.
TI - Integral Inequalities for the Principal Fundamental System of Solutions of a Homogeneous Sturm-Liouville Equation
JO - Bollettino dell'Unione Matematica Italiana
DA - 2012/6//
PB - Unione Matematica Italiana
VL - 5
IS - 2
SP - 423
EP - 448
AB - We consider the equation \begin{equation*} \tag{1} -y''(x) + q(x)y(x) = f(x), \qquad x \in \mathbb{R}, \end{equation*} where $f \in L_{p}(\mathbb{R})$, $p \in [1,\infty]$ ($L_{\infty}(\mathbb{R}) := C(\mathbb{R})$) and \begin{equation*} \tag{2} 0 \leq q \in L_{1}^{\text{loc}}(\mathbb{R}); \qquad \exists a > 0 : \inf_{x \in \mathbb{R}} \int_{x-a}^{x+a} q(t) \, dt > 0, \end{equation*} (Condition (2) guarantees correct solvability of (1) in class $L_{p}(\mathbb{R})$, $p \in [1,\infty]$.) Let $y$ be a solution of (1) in class $L_{p}(\mathbb{R})$, $p \in [1,\infty]$, and $\theta$ some non-negative and continuous function in $\mathbb{R}$. We find minimal additional requirements to $\theta$ under which for a given $p \in [1,\infty]$ there exists an absolute positive constant $c(p)$ such that the following inequality holds: \begin{equation*} \sup_{x \in \mathbb{R}} \theta(x)|y(x)| \leq c(p) \|f\|_{L_{p}(\mathbb{R})} \qquad \forall f \in L_{p}(\mathbb{R}). \end{equation*}
LA - eng
UR - http://eudml.org/doc/290967
ER -

References

top
  1. CHERNYAVSKAYA, N. - EL-NATANOV, N. - SHUSTER, L., Weighted estimates for solutions of a Sturm-Liouville equation in the space L 1 ( ) , to appear in Proc. Royal Soc. Edinburgh. Zbl1235.34107MR2855893DOI10.1017/S0308210510000600
  2. CHERNYAVSKAYA, N. - SHUSTER, L., On the WKB-method, Diff. Uravnenija, 25 (10) (1989), 1826-1829. Zbl0702.34053MR1025660
  3. CHERNYAVSKAYA, N. - SHUSTER, L., Estimates for the Green function of a general Sturm- Liouville operator and their applications, Proc. Amer. Math. Soc., 127 (1999), 1413-1426. Zbl0918.34032MR1625725DOI10.1090/S0002-9939-99-05049-2
  4. CHERNYAVSKAYA, N. - SHUSTER, L., Asymptotics on the diagonal of the Green function of a Sturm-Liouville operator and its applications, J. of London Math. Soc., 61 (2) (2000), 506-530. Zbl0959.34019MR1760676DOI10.1112/S0024610799008297
  5. CHERNYAVSKAYA, N. - SHUSTER, L., A criterion for correct solvability of the Sturm-Liouvile equation in L p ( ) ; Proc. Amer. Math. Soc., 130 (4) (2002), 1043-1054. Zbl0994.34014MR1873778DOI10.1090/S0002-9939-01-06145-7
  6. CHERNYAVSKAYA, N. - SHUSTER, L., Classification of initial data for the Riccati equation, Bollettino dela Unione Matematica Italiana, 8, 5-B (2002), 511-525. Zbl1072.32001MR1911203
  7. CHERNYAVSKAYA, N. - SHUSTER, L., Conditions for correct solvability of a simplest singular boundary value problem of general form, I, Z. Anal. Anwend., 25 (2006), 205-235. Zbl1122.34021MR2229446DOI10.4171/ZAA/1285
  8. CHERNYAVSKAYA, N. - SHUSTER, L., An asymptotic majorant for solutions of Sturm- Liouville equations in L p ( ) , Proc. Edinb. Math. Soc., 50 (2007), 87-114. Zbl1156.34018MR2294006DOI10.1017/S001309150500074X
  9. CHERNYAVSKAYA, N. - SHUSTER, L., Davies-Harrell representations, Otelbaev's inequalities and properties of solutions of Riccati equations, J. Math. Anal. Appl., 334 (2007), 998-1021. Zbl1134.34029MR2338644DOI10.1016/j.jmaa.2006.10.092
  10. CHERNYAVSKAYA, N. - SHUSTER, L., A criterion for correct solvability in L p ( ) of a general Sturm-Liouville equation, J. London Math. Soc. (2), 80 (2009), 99-120. Zbl1188.34036MR2520380DOI10.1112/jlms/jdp012
  11. CHERNYAVSKAYA, N. - SHUSTER, L., Weight estimates for solutions of linear singular differential equations of the first order and the Everitt-Giertz problem, Advances in Differential Equations, to appear. Zbl1265.34135MR2951737
  12. COURANT, R., Partial Differential Equations, John Wiley & Sons, New York, 1962. Zbl0099.29504MR140802
  13. DAVIES, E. B. - HARRELL, E. M., Conformally flat Riemannian metrices, Schrödinger operators and semi-classical approximation, J. Diff. Eq., 66 (2) (1987), 165-188. MR871993DOI10.1016/0022-0396(87)90030-1
  14. MYNBAEV, K. - OTELBAEV, M., Weighted Function Spaces and the Spectrum of Differential Operators, Nauka, Moscow, 1988. Zbl0651.46037MR950172
  15. OINAROV, R., Properties of a Sturm-Liouville operator in L p , Izvestiya Akad. Nauk Kazakh. SSR, 1 (1990), 43-47. MR1089974
  16. OTELBAEV, M., On smoothness of solutions of differential equations, Izv. Akad. Nauk Kazah. SSR, 5 (1977), 45-48. MR499422
  17. OTELBAEV, M., A criterion for the resolvent of a Sturm-Liouville operator to be a kernel, Math. Notes, 25 (1979), 296-297. Zbl0425.47029MR534299

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.