Integral Inequalities for the Principal Fundamental System of Solutions of a Homogeneous Sturm-Liouville Equation
N. A. Chernyavskaya; L. A. Shuster
Bollettino dell'Unione Matematica Italiana (2012)
- Volume: 5, Issue: 2, page 423-448
- ISSN: 0392-4041
Access Full Article
topAbstract
topHow to cite
topChernyavskaya, N. A., and Shuster, L. A.. "Integral Inequalities for the Principal Fundamental System of Solutions of a Homogeneous Sturm-Liouville Equation." Bollettino dell'Unione Matematica Italiana 5.2 (2012): 423-448. <http://eudml.org/doc/290967>.
@article{Chernyavskaya2012,
abstract = {We consider the equation \begin\{equation*\} \tag\{1\} -y''(x) + q(x)y(x) = f(x), \qquad x \in \mathbb\{R\}, \end\{equation*\} where $f \in L_\{p\}(\mathbb\{R\})$, $p \in [1,\infty]$ ($L_\{\infty\}(\mathbb\{R\}) := C(\mathbb\{R\})$) and \begin\{equation*\} \tag\{2\} 0 \leq q \in L\_\{1\}^\{\text\{loc\}\}(\mathbb\{R\}); \qquad \exists a > 0 : \inf\_\{x \in \mathbb\{R\}\} \int\_\{x-a\}^\{x+a\} q(t) \, dt > 0, \end\{equation*\} (Condition (2) guarantees correct solvability of (1) in class $L_\{p\}(\mathbb\{R\})$, $p \in [1,\infty]$.) Let $y$ be a solution of (1) in class $L_\{p\}(\mathbb\{R\})$, $p \in [1,\infty]$, and $\theta$ some non-negative and continuous function in $\mathbb\{R\}$. We find minimal additional requirements to $\theta$ under which for a given $p \in [1,\infty]$ there exists an absolute positive constant $c(p)$ such that the following inequality holds: \begin\{equation*\} \sup\_\{x \in \mathbb\{R\}\} \theta(x)|y(x)| \leq c(p) \|f\|\_\{L\_\{p\}(\mathbb\{R\})\} \qquad \forall f \in L\_\{p\}(\mathbb\{R\}). \end\{equation*\}},
author = {Chernyavskaya, N. A., Shuster, L. A.},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {6},
number = {2},
pages = {423-448},
publisher = {Unione Matematica Italiana},
title = {Integral Inequalities for the Principal Fundamental System of Solutions of a Homogeneous Sturm-Liouville Equation},
url = {http://eudml.org/doc/290967},
volume = {5},
year = {2012},
}
TY - JOUR
AU - Chernyavskaya, N. A.
AU - Shuster, L. A.
TI - Integral Inequalities for the Principal Fundamental System of Solutions of a Homogeneous Sturm-Liouville Equation
JO - Bollettino dell'Unione Matematica Italiana
DA - 2012/6//
PB - Unione Matematica Italiana
VL - 5
IS - 2
SP - 423
EP - 448
AB - We consider the equation \begin{equation*} \tag{1} -y''(x) + q(x)y(x) = f(x), \qquad x \in \mathbb{R}, \end{equation*} where $f \in L_{p}(\mathbb{R})$, $p \in [1,\infty]$ ($L_{\infty}(\mathbb{R}) := C(\mathbb{R})$) and \begin{equation*} \tag{2} 0 \leq q \in L_{1}^{\text{loc}}(\mathbb{R}); \qquad \exists a > 0 : \inf_{x \in \mathbb{R}} \int_{x-a}^{x+a} q(t) \, dt > 0, \end{equation*} (Condition (2) guarantees correct solvability of (1) in class $L_{p}(\mathbb{R})$, $p \in [1,\infty]$.) Let $y$ be a solution of (1) in class $L_{p}(\mathbb{R})$, $p \in [1,\infty]$, and $\theta$ some non-negative and continuous function in $\mathbb{R}$. We find minimal additional requirements to $\theta$ under which for a given $p \in [1,\infty]$ there exists an absolute positive constant $c(p)$ such that the following inequality holds: \begin{equation*} \sup_{x \in \mathbb{R}} \theta(x)|y(x)| \leq c(p) \|f\|_{L_{p}(\mathbb{R})} \qquad \forall f \in L_{p}(\mathbb{R}). \end{equation*}
LA - eng
UR - http://eudml.org/doc/290967
ER -
References
top- CHERNYAVSKAYA, N. - EL-NATANOV, N. - SHUSTER, L., Weighted estimates for solutions of a Sturm-Liouville equation in the space , to appear in Proc. Royal Soc. Edinburgh. Zbl1235.34107MR2855893DOI10.1017/S0308210510000600
- CHERNYAVSKAYA, N. - SHUSTER, L., On the WKB-method, Diff. Uravnenija, 25 (10) (1989), 1826-1829. Zbl0702.34053MR1025660
- CHERNYAVSKAYA, N. - SHUSTER, L., Estimates for the Green function of a general Sturm- Liouville operator and their applications, Proc. Amer. Math. Soc., 127 (1999), 1413-1426. Zbl0918.34032MR1625725DOI10.1090/S0002-9939-99-05049-2
- CHERNYAVSKAYA, N. - SHUSTER, L., Asymptotics on the diagonal of the Green function of a Sturm-Liouville operator and its applications, J. of London Math. Soc., 61 (2) (2000), 506-530. Zbl0959.34019MR1760676DOI10.1112/S0024610799008297
- CHERNYAVSKAYA, N. - SHUSTER, L., A criterion for correct solvability of the Sturm-Liouvile equation in ; Proc. Amer. Math. Soc., 130 (4) (2002), 1043-1054. Zbl0994.34014MR1873778DOI10.1090/S0002-9939-01-06145-7
- CHERNYAVSKAYA, N. - SHUSTER, L., Classification of initial data for the Riccati equation, Bollettino dela Unione Matematica Italiana, 8, 5-B (2002), 511-525. Zbl1072.32001MR1911203
- CHERNYAVSKAYA, N. - SHUSTER, L., Conditions for correct solvability of a simplest singular boundary value problem of general form, I, Z. Anal. Anwend., 25 (2006), 205-235. Zbl1122.34021MR2229446DOI10.4171/ZAA/1285
- CHERNYAVSKAYA, N. - SHUSTER, L., An asymptotic majorant for solutions of Sturm- Liouville equations in , Proc. Edinb. Math. Soc., 50 (2007), 87-114. Zbl1156.34018MR2294006DOI10.1017/S001309150500074X
- CHERNYAVSKAYA, N. - SHUSTER, L., Davies-Harrell representations, Otelbaev's inequalities and properties of solutions of Riccati equations, J. Math. Anal. Appl., 334 (2007), 998-1021. Zbl1134.34029MR2338644DOI10.1016/j.jmaa.2006.10.092
- CHERNYAVSKAYA, N. - SHUSTER, L., A criterion for correct solvability in of a general Sturm-Liouville equation, J. London Math. Soc. (2), 80 (2009), 99-120. Zbl1188.34036MR2520380DOI10.1112/jlms/jdp012
- CHERNYAVSKAYA, N. - SHUSTER, L., Weight estimates for solutions of linear singular differential equations of the first order and the Everitt-Giertz problem, Advances in Differential Equations, to appear. Zbl1265.34135MR2951737
- COURANT, R., Partial Differential Equations, John Wiley & Sons, New York, 1962. Zbl0099.29504MR140802
- DAVIES, E. B. - HARRELL, E. M., Conformally flat Riemannian metrices, Schrödinger operators and semi-classical approximation, J. Diff. Eq., 66 (2) (1987), 165-188. MR871993DOI10.1016/0022-0396(87)90030-1
- MYNBAEV, K. - OTELBAEV, M., Weighted Function Spaces and the Spectrum of Differential Operators, Nauka, Moscow, 1988. Zbl0651.46037MR950172
- OINAROV, R., Properties of a Sturm-Liouville operator in , Izvestiya Akad. Nauk Kazakh. SSR, 1 (1990), 43-47. MR1089974
- OTELBAEV, M., On smoothness of solutions of differential equations, Izv. Akad. Nauk Kazah. SSR, 5 (1977), 45-48. MR499422
- OTELBAEV, M., A criterion for the resolvent of a Sturm-Liouville operator to be a kernel, Math. Notes, 25 (1979), 296-297. Zbl0425.47029MR534299
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.