Rosenthal and semi-Tauberian linear relations in normed spaces
Teresa Álvarez; Antonio Martínez-Abejón
Bollettino dell'Unione Matematica Italiana (2005)
- Volume: 8-B, Issue: 3, page 707-722
- ISSN: 0392-4041
Access Full Article
topAbstract
topHow to cite
topÁlvarez, Teresa, and Martínez-Abejón, Antonio. "Rosenthal and semi-Tauberian linear relations in normed spaces." Bollettino dell'Unione Matematica Italiana 8-B.3 (2005): 707-722. <http://eudml.org/doc/195428>.
@article{Álvarez2005,
abstract = {The class of Rosenthal linear relations in normed spaces is introduced and studied in terms of their first and second conjugates. We investigate the relationship between a Rosenthal linear relation and its conjugate. In this paper, we also study the semi-Tauberian linear relations following the pattern followed for the study of the Tauberian linear relations. We prove that the semi-Tauberian linear relations share some of the properties of Tauberian linear relations and they are related to Rosenthal linear relations in the same way as Tauberian linear relations are related to weakly compact linear relations. We describe examples and investigate special cases: in particular, $F_\{+\}$ and strictly singular linear relations.},
author = {Álvarez, Teresa, Martínez-Abejón, Antonio},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {10},
number = {3},
pages = {707-722},
publisher = {Unione Matematica Italiana},
title = {Rosenthal and semi-Tauberian linear relations in normed spaces},
url = {http://eudml.org/doc/195428},
volume = {8-B},
year = {2005},
}
TY - JOUR
AU - Álvarez, Teresa
AU - Martínez-Abejón, Antonio
TI - Rosenthal and semi-Tauberian linear relations in normed spaces
JO - Bollettino dell'Unione Matematica Italiana
DA - 2005/10//
PB - Unione Matematica Italiana
VL - 8-B
IS - 3
SP - 707
EP - 722
AB - The class of Rosenthal linear relations in normed spaces is introduced and studied in terms of their first and second conjugates. We investigate the relationship between a Rosenthal linear relation and its conjugate. In this paper, we also study the semi-Tauberian linear relations following the pattern followed for the study of the Tauberian linear relations. We prove that the semi-Tauberian linear relations share some of the properties of Tauberian linear relations and they are related to Rosenthal linear relations in the same way as Tauberian linear relations are related to weakly compact linear relations. We describe examples and investigate special cases: in particular, $F_{+}$ and strictly singular linear relations.
LA - eng
UR - http://eudml.org/doc/195428
ER -
References
top- ÁLVAREZ, T. - ONIEVA, V. M., A note on three-space ideals of Banach spaces, Proceedings of the Tenth Spanish-Portuguese Conference on Mathematics, III (Murcia, 1985), Univ. Murcia (1985), 251-254. MR844105
- ÁLVAREZ, T. - CROSS, R. W. - GOUVEIA, A. I., Adjoint characterisations of unbounded weakly compact, weakly completely continuous and unconditionally converging operators, Studia Math., 113 (3) (1995), 293-298. Zbl0823.47020MR1330212
- ÁLVAREZ, T. - CROSS, R. W. - GONZÁLEZ, M., Factorization of unbounded thin and cothin operators, Quaestiones Math., 22 (1999), 519-529. Zbl0964.47009MR1776243
- AUBIN, J. P. - CELLINA, A., Differential Inclusions, Springer-Verlag, New York, 1984. Zbl0538.34007MR755330
- AUBIN, J. P. - FRANKOWSKA, H., Set Valued Analysis, Birkhauser, Boston, 1990. Zbl1168.49014MR1048347
- BOMBAL, F. - HERNANDO, B., A double-dual characterisation of Rosenthal and semi-Tauberian operators, Proc. Royal Irish Acad., Ser. A, 95 (1995), 69-75. Zbl0856.47003MR1369046
- CLARKE, F. H., Optimization and Nonsmooth Analysis, Wiley-Interscience Publication, Wiley and Sons, Toronto, 1983. Zbl0696.49002MR709590
- CROSS, R. W., Properties of Some Norm Related Functions of Unbounded Linear Operators, Math. Z., 199 (1988), 285-303. Zbl0639.47009MR958653
- CROSS, R. W., A characterisation of almost reflexive normed spaces, Proc. Royal Irish Acad., Ser. A 92 (1992), 225-228. Zbl0741.46005MR1204221
- CROSS, R. W., Multivalued Linear Operators, Monographs and Textbooks in Pure and Applied Mathematics, 213, Marcel Dekker, New York, 1998. Zbl0911.47002MR1631548
- DAVIS, W. J. - FIGIEL, T. - JOHNSON, W. B. - PELCZYNSKI, A., Factoring weakly compact operators, J. Funct. Anal., 17 (1974), 311-327. Zbl0306.46020MR355536
- FAVINI, A. - YAGI, A., Multivalued linear operators and degenerate evolution equations, Ann. Mat. Pura. Appl. (4) 163 (1993), 353-384. Zbl0786.47037MR1219605
- GARLING, D. H. J. - WILANSKY, A., On a summability theorem of Berg, Crawford and Whitley, Math. Proc. Camb. Phil. Soc., 71 (1972), 495-497. Zbl0233.46026MR294946
- GONZÁLEZ, M. - ONIEVA, V. M., Semi-Fredholm operators and semigroups associated with some classical operator ideals, Proc. Royal Irish Acad., Ser. A 88 A (1988), 35- 38. Zbl0633.47029MR974281
- GONZÁLEZ, M., Dual results of factorization for operators, Ann. Acad. Sc. Fenn., Ser. A. I. Math. 18 (1993), 3-11. Zbl0795.46013MR1207890
- GROMOV, M., Partial differential relations, Springer-Verlag, Berlin, 1986. Zbl0651.53001MR864505
- HERNANDO, B., Some Properties of the Second Conjugate of a Tauberian operator, J. Math. Anal. Appl., 228 (1998), 60-65. Zbl0918.47004MR1659952
- KALTON, J. J. - WILANSKY, A., Tauberian operators in Banach spaces, Proc. Amer. Math. Soc., 57 (1976), 251-255. Zbl0304.47023MR473896
- KURATOWSKI, C., Topologie I, Polska Akademia Nauk.Warsaw, 1952. Zbl0102.37602
- LINDENSTRAUSS, J. - TZAFRIRI, L., Classical Banach spaces I, Springer-Verlag, Berlin, 1977. Zbl0362.46013MR500056
- MICHAEL, E., Continuous selections I, II, III, Annals of Math., 63, 361-381; 64, 562-580; 65, 375-390. Zbl0088.15003MR77107
- NEIDINGER, R., Properties of Tauberian operators in Banach spaces, Ph. D. Thesis, Univ. Texas, 1984.
- VON NEUMANN, J., Functional Operators, Vol.2: The Geometry of Orthogonal spaces, Ann. Math. Stud., 22, Princeton University Press, Princeton N. J., 1950. Zbl0039.11701
- SCHACHERMAYER, W., For a Banach space isomorphic to its square the Radon-Nikodym property and the Krein-Milman property are equivalent, Studia Math., 81 (1985), 329-338. Zbl0631.46019MR808576
- TACON, D. G., Generalised semi-Fredholms transformations, J. Austral. Math. Soc., A 34 (1983), 60-70. Zbl0531.47011MR683179
- WILCOX, D., Multivalued Semi-Fredholm Operators in Normed Linear Spaces, Ph. D. THESIS, Univ. Cape Town, 2001.
- YANG, K. W., The generalized Fredholm operators, Trans. Amer. Math. Soc., 219 (1976), 313-326. Zbl0297.47027MR423114
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.