Rosenthal and semi-Tauberian linear relations in normed spaces
Teresa Álvarez; Antonio Martínez-Abejón
Bollettino dell'Unione Matematica Italiana (2005)
- Volume: 8-B, Issue: 3, page 707-722
- ISSN: 0392-4041
Access Full Article
topAbstract
topHow to cite
topReferences
top- ÁLVAREZ, T. - ONIEVA, V. M., A note on three-space ideals of Banach spaces, Proceedings of the Tenth Spanish-Portuguese Conference on Mathematics, III (Murcia, 1985), Univ. Murcia (1985), 251-254. MR844105
- ÁLVAREZ, T. - CROSS, R. W. - GOUVEIA, A. I., Adjoint characterisations of unbounded weakly compact, weakly completely continuous and unconditionally converging operators, Studia Math., 113 (3) (1995), 293-298. Zbl0823.47020MR1330212
- ÁLVAREZ, T. - CROSS, R. W. - GONZÁLEZ, M., Factorization of unbounded thin and cothin operators, Quaestiones Math., 22 (1999), 519-529. Zbl0964.47009MR1776243
- AUBIN, J. P. - CELLINA, A., Differential Inclusions, Springer-Verlag, New York, 1984. Zbl0538.34007MR755330
- AUBIN, J. P. - FRANKOWSKA, H., Set Valued Analysis, Birkhauser, Boston, 1990. Zbl1168.49014MR1048347
- BOMBAL, F. - HERNANDO, B., A double-dual characterisation of Rosenthal and semi-Tauberian operators, Proc. Royal Irish Acad., Ser. A, 95 (1995), 69-75. Zbl0856.47003MR1369046
- CLARKE, F. H., Optimization and Nonsmooth Analysis, Wiley-Interscience Publication, Wiley and Sons, Toronto, 1983. Zbl0696.49002MR709590
- CROSS, R. W., Properties of Some Norm Related Functions of Unbounded Linear Operators, Math. Z., 199 (1988), 285-303. Zbl0639.47009MR958653
- CROSS, R. W., A characterisation of almost reflexive normed spaces, Proc. Royal Irish Acad., Ser. A 92 (1992), 225-228. Zbl0741.46005MR1204221
- CROSS, R. W., Multivalued Linear Operators, Monographs and Textbooks in Pure and Applied Mathematics, 213, Marcel Dekker, New York, 1998. Zbl0911.47002MR1631548
- DAVIS, W. J. - FIGIEL, T. - JOHNSON, W. B. - PELCZYNSKI, A., Factoring weakly compact operators, J. Funct. Anal., 17 (1974), 311-327. Zbl0306.46020MR355536
- FAVINI, A. - YAGI, A., Multivalued linear operators and degenerate evolution equations, Ann. Mat. Pura. Appl. (4) 163 (1993), 353-384. Zbl0786.47037MR1219605
- GARLING, D. H. J. - WILANSKY, A., On a summability theorem of Berg, Crawford and Whitley, Math. Proc. Camb. Phil. Soc., 71 (1972), 495-497. Zbl0233.46026MR294946
- GONZÁLEZ, M. - ONIEVA, V. M., Semi-Fredholm operators and semigroups associated with some classical operator ideals, Proc. Royal Irish Acad., Ser. A 88 A (1988), 35- 38. Zbl0633.47029MR974281
- GONZÁLEZ, M., Dual results of factorization for operators, Ann. Acad. Sc. Fenn., Ser. A. I. Math. 18 (1993), 3-11. Zbl0795.46013MR1207890
- GROMOV, M., Partial differential relations, Springer-Verlag, Berlin, 1986. Zbl0651.53001MR864505
- HERNANDO, B., Some Properties of the Second Conjugate of a Tauberian operator, J. Math. Anal. Appl., 228 (1998), 60-65. Zbl0918.47004MR1659952
- KALTON, J. J. - WILANSKY, A., Tauberian operators in Banach spaces, Proc. Amer. Math. Soc., 57 (1976), 251-255. Zbl0304.47023MR473896
- KURATOWSKI, C., Topologie I, Polska Akademia Nauk.Warsaw, 1952. Zbl0102.37602
- LINDENSTRAUSS, J. - TZAFRIRI, L., Classical Banach spaces I, Springer-Verlag, Berlin, 1977. Zbl0362.46013MR500056
- MICHAEL, E., Continuous selections I, II, III, Annals of Math., 63, 361-381; 64, 562-580; 65, 375-390. Zbl0088.15003MR77107
- NEIDINGER, R., Properties of Tauberian operators in Banach spaces, Ph. D. Thesis, Univ. Texas, 1984.
- VON NEUMANN, J., Functional Operators, Vol.2: The Geometry of Orthogonal spaces, Ann. Math. Stud., 22, Princeton University Press, Princeton N. J., 1950. Zbl0039.11701
- SCHACHERMAYER, W., For a Banach space isomorphic to its square the Radon-Nikodym property and the Krein-Milman property are equivalent, Studia Math., 81 (1985), 329-338. Zbl0631.46019MR808576
- TACON, D. G., Generalised semi-Fredholms transformations, J. Austral. Math. Soc., A 34 (1983), 60-70. Zbl0531.47011MR683179
- WILCOX, D., Multivalued Semi-Fredholm Operators in Normed Linear Spaces, Ph. D. THESIS, Univ. Cape Town, 2001.
- YANG, K. W., The generalized Fredholm operators, Trans. Amer. Math. Soc., 219 (1976), 313-326. Zbl0297.47027MR423114