Absorption effects for some elliptic equations with singularities
Bollettino dell'Unione Matematica Italiana (2005)
- Volume: 8-B, Issue: 2, page 369-395
- ISSN: 0392-4041
Access Full Article
topAbstract
topHow to cite
topPorretta, A.. "Absorption effects for some elliptic equations with singularities." Bollettino dell'Unione Matematica Italiana 8-B.2 (2005): 369-395. <http://eudml.org/doc/195539>.
@article{Porretta2005,
abstract = {We give an expository review of recent results obtained for elliptic equations having natural growth terms of absorption type and singular data. As a new result, we provide an application to the case of lower order terms of subcritical growth, proving a general solvability result with measure data for a class of equations modeled on (1.6).},
author = {Porretta, A.},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {6},
number = {2},
pages = {369-395},
publisher = {Unione Matematica Italiana},
title = {Absorption effects for some elliptic equations with singularities},
url = {http://eudml.org/doc/195539},
volume = {8-B},
year = {2005},
}
TY - JOUR
AU - Porretta, A.
TI - Absorption effects for some elliptic equations with singularities
JO - Bollettino dell'Unione Matematica Italiana
DA - 2005/6//
PB - Unione Matematica Italiana
VL - 8-B
IS - 2
SP - 369
EP - 395
AB - We give an expository review of recent results obtained for elliptic equations having natural growth terms of absorption type and singular data. As a new result, we provide an application to the case of lower order terms of subcritical growth, proving a general solvability result with measure data for a class of equations modeled on (1.6).
LA - eng
UR - http://eudml.org/doc/195539
ER -
References
top- BANDLE, C. - GIARRUSSO, E., Boundary blow-up for semilinear elliptic equations with nonlinear gradient terms, Adv. Diff. Equat., 1 (1996), 133-150. Zbl0840.35034MR1357958
- BANDLE, C. - MARCUS, M., Large solutions of semilinear elliptic equations: existence, uniqueness and asymptotic behavior, J. Anal. Math., 58 (1992), 9-24. Zbl0802.35038MR1226934
- BENILAN, P. - BOCCARDO, L. - GALLOUËT, T. - GARIEPY, R. - PIERRE, M. - VÁZQUEZ, J. L., An theory of existence and uniqueness of nonlinear elliptic equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 22 (1995), 240-273. Zbl0866.35037MR1354907
- BENILAN, P. - BREZIS, H., Nonlinear problems related to the Thomas-Fermi equation, J. Evolution Equations, 3 (2003), 673-770. Zbl1150.35406MR2058057
- BENSOUSSAN, A. - BOCCARDO, L. - MURAT, F., On a nonlinear partial differential equation having natural growth terms and unbounded solutions, Ann. Inst. H. Poincaré Anal. Non Linéaire, 5 (1988), 347-364. Zbl0696.35042MR963104
- BOCCARDO, L., T-minima: an approach to minimization problems in , Contributions in honor of the memory of Ennio De Giorgi. Ricerche Mat., 49 (2000), 135-154. Zbl1009.49002MR1826220
- BOCCARDO, L. - GALLOUËT, T., Strongly nonlinear elliptic equations having natural growth terms and data, Nonlinear Anal. T.M.A., 19 (1992), 573-579. Zbl0795.35031MR1183664
- BOCCARDO, L. - GALLOUËT, T. - ORSINA, L., Existence and uniqueness of entropy solutions for nonlinear elliptic equations with measure data, Ann. Inst. H. Poincaré Anal. Non Linéaire, 13 (1996), 539-551. Zbl0857.35126MR1409661
- BOCCARDO, L. - GALLOUËT, T. - ORSINA, L., Existence and nonexistence of solutions for some nonlinear elliptic equations, Journal d'Analyse Math., 73 (1997), 203-223. Zbl0898.35035MR1616410
- BREZIS, H., Nonlinear elliptic equations involving measures, in Variational Inequalities, Cottle, Giannessi, Lions ed., Wiley, 1980, 53-73. Zbl0643.35108
- BREZIS, H., Some Variational Problems of the Thomas-Fermi type, in Contributions to nonlinear partial differential equations (Madrid, 1981), 82-89, Res. Notes in Math.89, Pitman, Boston Mass.-London, 1983. Zbl0533.35038MR578739
- BREZIS, H., Semilinear equations in without condition at infinity, Appl. Math. Optim., 12, no. 3 (1984), 271-282. Zbl0562.35035MR768633
- BREZIS, H. - MARCUS, M. - PONCE, A., Nonlinear elliptic equations with measures revisited, to appear in Annals of Math. Studies, Princeton Univ. Press. Zbl1151.35034MR2333208
- BREZIS, H. - NIRENBERG, L., Removable singularities for some nonlinear elliptic equations, Top. Methods Nonlin. Anal., 9 (1997), 201-219. Zbl0905.35027MR1491843
- DAL MASO, G. - MURAT, F. - ORSINA, L. - PRIGNET, A., Renormalized solutions of elliptic equations with general measure data, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 28, 4 (1999), 741-808. Zbl0958.35045MR1760541
- FUKUSHIMA, M. - SATO, K. - TANIGUCHI, S., On the closable part of pre-Dirichlet forms and the fine support of the underlying measures, Osaka J. Math., 28 (1991), 517-535. Zbl0756.60071MR1144471
- GMIRA, A. - VERON, L., Boundary singularities of solutions of some nonlinear elliptic equations, Duke Math. J., 64 (1991), 271-324. Zbl0766.35015MR1136377
- IWANIEC, T. - SBORDONE, C., Weak minima of variational integrals, J. Reine Angew. Math., 454 (1994), 143-161. Zbl0802.35016MR1288682
- KELLER, J. B., On solutions of , Comm. Pure Appl. Math., 10 (1957), 503-510. Zbl0090.31801MR91407
- LASRY, J.-M. - LIONS, P.-L., Nonlinear elliptic equations with singular boundary conditions and stochastic control with state constraints. I. The model problem, Math. Ann., 283, n. 4 (1989), 583-630. Zbl0688.49026MR990591
- LERAY, J. - LIONS, J.-L., Quelques resultats de Višik sur les problemes elliptiques non lineaires par les methodes de Minty-Browder, Bull. Soc. Math. France, 93 (1965), 97-107. Zbl0132.10502MR194733
- LOEWNER, C. - NIRENBERG, L., Partial differential equations invariant under conformal or projective transformations, Contributions to analysis (a collection of papers dedicated to Lipman Bers), pp. 245-272, Academic Press, New York, 1974. Zbl0298.35018MR358078
- MARCUS, M. - VERON, L., Uniqueness and asymptotic behaviour of solutions with boundary blow-up for a class of nonlinear elliptic equations, Ann. Inst. H. Poincare Anal. Non Lineaire, 14 (1997), 237-274. Zbl0877.35042MR1441394
- MARCUS, M. - VERON, L., Existence and uniqueness results for large solutions of general nonlinear elliptic equations, Journal of Evolution Equations, 3 (2003), 637-652. Zbl1160.35408MR2058055
- MURAT, F. - PORRETTA, A., Stability properties, existence and nonexistence of renormalized solutions for elliptic equations with measure data, Comm. P.D.E., 27, n. 11 & 12 (2002), 2267-2310. Zbl1129.35397MR1944030
- ORSINA, L., Weak minima for some functionals and elliptic equations involving measures, C. R. Acad. Sci. Paris322, Serie I, (1996), 1151-1156. Zbl0849.35024MR1396657
- ORSINA, L. - PORRETTA, A., Strong stability results for nonlinear elliptic equations with respect to very singular perturbation of the data, Comm. in Contemporary Math., 3 (2001), 259-285. Zbl1162.35371MR1831931
- OSSERMAN, R., On the inequality , Pacific J. Math., 7 (1957), 1641-1647. Zbl0083.09402MR98239
- PORRETTA, A., Some remarks on the regularity of solutions for a class of elliptic equations with measure data, Houston Journ. of Math., 26 (2000), 183-213. Zbl0974.35032MR1814734
- PORRETTA, A., Remarks on the existence or loss of minima of infinite energy, preprint. Zbl1194.49008MR2337027
- PORRETTA, A., Local estimates and large solutions for some elliptic equations with absorption, Advances in Diff. Eq.9, n. 3-4 (2004), 329-351. Zbl1150.35401MR2100631
- PORRETTA, A., PHD Thesis, Università di Roma «La Sapienza», 1999.
- PORRETTA, A., Existence for elliptic equations in having lower order terms with natural growth, Portugaliae Math., 57 (2000), 179-190. Zbl0963.35068MR1759814
- PORRETTA, A., Some uniqueness results for elliptic equations without condition at infinity, Commun. Contemporary Mathematics, 5, n. 5 (2003), 1-13. Zbl1156.35369MR2017714
- STAMPACCHIA, G., Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus, Ann. Inst. Fourier, (Grenoble), 15, n. 1 (1965), 189-258. Zbl0151.15401MR192177
- L. VAZQUEZ, J., On a semilinear equation in involving bounded measures, Proc. Royal Soc. Edinburgh, 95A (1983), 181-202. Zbl0536.35025MR726870
- VERON, L., Semilinear elliptic equations with uniform blow-up on the boundary, J. Analyse Math., 59 (1992), 231-250. Zbl0802.35042MR1226963
- VERON, L., Elliptic equations involving measures, to appear in Handbook for Partial Differential Equations, M. Chipot, P. Quittner Eds, Elsevier. Zbl1129.35478MR2103694
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.