Homogeneous Carnot groups related to sets of vector fields

Andrea Bonfiglioli

Bollettino dell'Unione Matematica Italiana (2004)

  • Volume: 7-B, Issue: 1, page 79-107
  • ISSN: 0392-4041

Abstract

top
In this paper, we are concerned with the following problem: given a set of smooth vector fields X 1 , , X m on R N , we ask whether there exists a homogeneous Carnot group G = ( R N , , δ λ ) such that i X i 2 is a sub-Laplacian on G . We find necessary and sufficient conditions on the given vector fields in order to give a positive answer to the question. Moreover, we explicitly construct the group law i as above, providing direct proofs. Our main tool is a suitable version of the Campbell-Hausdorff formula. Finally, we exhibit several non-trivial examples of our construction.

How to cite

top

Bonfiglioli, Andrea. "Homogeneous Carnot groups related to sets of vector fields." Bollettino dell'Unione Matematica Italiana 7-B.1 (2004): 79-107. <http://eudml.org/doc/195551>.

@article{Bonfiglioli2004,
abstract = {In this paper, we are concerned with the following problem: given a set of smooth vector fields $X_\{1\}, \ldots , X_\{m\}$ on $\mathbb\{R\}^\{N\}$, we ask whether there exists a homogeneous Carnot group $\mathbb\{G\}=(\mathbb\{R\}^\{N\}, \circ, \delta_\{\lambda\} )$ such that $\sum_\{i\} X_\{i\}^\{2\}$ is a sub-Laplacian on $\mathbb\{G\}$. We find necessary and sufficient conditions on the given vector fields in order to give a positive answer to the question. Moreover, we explicitly construct the group law i as above, providing direct proofs. Our main tool is a suitable version of the Campbell-Hausdorff formula. Finally, we exhibit several non-trivial examples of our construction.},
author = {Bonfiglioli, Andrea},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {2},
number = {1},
pages = {79-107},
publisher = {Unione Matematica Italiana},
title = {Homogeneous Carnot groups related to sets of vector fields},
url = {http://eudml.org/doc/195551},
volume = {7-B},
year = {2004},
}

TY - JOUR
AU - Bonfiglioli, Andrea
TI - Homogeneous Carnot groups related to sets of vector fields
JO - Bollettino dell'Unione Matematica Italiana
DA - 2004/2//
PB - Unione Matematica Italiana
VL - 7-B
IS - 1
SP - 79
EP - 107
AB - In this paper, we are concerned with the following problem: given a set of smooth vector fields $X_{1}, \ldots , X_{m}$ on $\mathbb{R}^{N}$, we ask whether there exists a homogeneous Carnot group $\mathbb{G}=(\mathbb{R}^{N}, \circ, \delta_{\lambda} )$ such that $\sum_{i} X_{i}^{2}$ is a sub-Laplacian on $\mathbb{G}$. We find necessary and sufficient conditions on the given vector fields in order to give a positive answer to the question. Moreover, we explicitly construct the group law i as above, providing direct proofs. Our main tool is a suitable version of the Campbell-Hausdorff formula. Finally, we exhibit several non-trivial examples of our construction.
LA - eng
UR - http://eudml.org/doc/195551
ER -

References

top
  1. ALEXOPOULOS, G. K., Sub-Laplacians with drift on Lie groups of polynomial volume growth, Mem. Amer. Math. Soc., 739 (2002). Zbl0994.22006MR1878341
  2. ALTAFINI, C., A matrix Lie group of Carnot type for filiform sub-Riemannian structures and its application to control systems in chained form, d'Azevedo Breda, A. M. (ed.) et al., Proceedings of the summer school on differential geometry, Coimbra, Portugal, September 1999. Zbl0990.93022MR1859942
  3. BIRINDELLI, I.- LANCONELLI, E., A note on one dimensional symmetry in Carnot groups, Atti Accad. Naz. Lincei, to appear. Zblpre02216756MR1949145
  4. BONFIGLIOLI, A.- LANCONELLI, E., Liouville-type theorems for real sub-Laplacians, Manuscripta Math., 105 (2001), 111-124. Zbl1016.35014MR1885817
  5. BONFIGLIOLI, A.- LANCONELLI, E., Maximum Principle on unbounded domains for sub-Laplacians: a Potential Theory approach, Proc. Amer. Math. Soc., 130 (2002), 2295-2304. Zbl1165.35331MR1896411
  6. BONFIGLIOLI, A.- LANCONELLI, E., Subharmonic functions on Carnot groups, Math. Ann., to appear. Zbl1017.31003MR1957266
  7. BONFIGLIOLI, A.- LANCONELLI, E.- UGUZZONI, F., Uniform Gaussian estimates of the fundamental solutions for heat operators on Carnot groups, Adv. Differential Equations, to appear. Zbl1036.35061MR1919700
  8. BONFIGLIOLI, A.- UGUZZONI, F., Families of diffeomorphic sub-Laplacians and free Carnot groups, Forum Math., to appear. Zbl1065.35102MR2050190
  9. BONY, J.-M., Principe du maximum, inégalité de Harnack et unicité du problème de Cauchy pour les opérateurs elliptiques dégénérés, Ann. Inst. Fourier (Grenoble), 19 (1969), 277-304. Zbl0176.09703MR262881
  10. BOURBAKI, N., Lie Groups and Lie Algebras, Chapters 1-3, Elements of Mathematics, Springer-Verlag, Berlin, 1989. Zbl0672.22001MR979493
  11. BRAMANTI, M.- BRANDOLINI, L., L p estimates for nonvariational hypoelliptic operators with VMO coefficients, Trans. Amer. Math. Soc., 352 (2000), 781-822. Zbl0935.35037MR1608289
  12. CAPOGNA, L., Regularity for quasilinear equations and 1 -quasiconformal maps in Carnot groups, Math. Ann., 313 (1999), 263-295. Zbl0927.35024MR1679786
  13. CORWIN, L. J.- GREENLEAF, F. P., Representations of nilpotent Lie groups and their applications (Part I: Basic theory and examples), Cambridge Studies in Advanced Mathematics, 18Cambridge University Press, Cambridge, 1990. Zbl0704.22007MR1070979
  14. DAY, J.- SO, W.- THOMPSON, R. C., Some properties of the Campbell Baker Hausdorff series, Linear Multilinear Algebra, 29 (1991), 207-224. Zbl0728.22008MR1119454
  15. DJOKOVIĆ, D. Ž., An elementary proof of the Baker-Campbell-Hausdorff-Dynkin formula, Math. Z., 143 (1975), 209-211. Zbl0298.22010MR399196
  16. EGGERT, A., Extending the Campbell-Hausdorff multiplication, Geom. Dedicata, 46 (1993), 35-45. Zbl0778.17002MR1214464
  17. FOLLAND, G. B., Subelliptic estimates and function spaces on nilpotent Lie groups, Ark. Mat., 13 (1975), 161-207. Zbl0312.35026MR494315
  18. FOLLAND, G. B.- STEIN, E. M., Hardy spaces on homogeneous groups, Mathematical Notes, 28Princeton University Press, Princeton, N.J., 1982. Zbl0508.42025MR657581
  19. FRANCHI, B.- FERRARI, F., A local doubling formula for the harmonic measure associated with sub-elliptic operators, preprint (2001). 
  20. FRANCHI, B.- SERAPIONI, R.- SERRA CASSANO, F., Rectifiability and perimeter in the Heisenberg group, Math. Ann., 321 (2001), 479-531. Zbl1057.49032MR1871966
  21. GAROFALO, N.- VASSILEV, D., Regularity near the characteristic set in the non-linear Dirichlet problem and conformal geometry of sub-Laplacians on Carnot groups, Math. Ann., 318 (2000), 453-516. Zbl1158.35341MR1800766
  22. GAROFALO, N.- VASSILEV, D., Symmetry properties of positive entire solutions of Yamabe-type equations on groups of Heisenberg type, Duke Math. J., 106 (2001), 411-448. Zbl1012.35014MR1813232
  23. GRAYSON, M.- GROSSMAN, R., Models for free nilpotent Lie algebras, J. Algebra, 135 (1990), 177-191. Zbl0717.17006MR1076084
  24. GOLÉ, C.- KARIDI, R., A note on Carnot geodesics in nilpotent Lie groups, J. Dyn. Control Syst., 1 (1995), 535-549. Zbl0941.53029MR1364562
  25. HAUSNER, M.- SCWARTZ, J. T., Lie groups. Lie algebras, Notes on Mathematics and Its Applications, New York-London-Paris: Gordon and Breach, 1968. Zbl0192.35902MR235065
  26. HEINONEN, J.- HOLOPAINEN, I., Quasiregular maps on Carnot groups, J. Geom. Anal., 7 (1997), 109-148. Zbl0905.30018MR1630785
  27. HOCHSCHILD, G., La structure de groupes de Lie, Monographies universitaires de mathématique, 27, Paris: Dunod, 1968. Zbl0157.36502
  28. HÖRMANDER, L., Hypoelliptic second order differential equations, Acta Math., 119 (1967), 147-171. Zbl0156.10701MR222474
  29. JACOBSON, N., Lie Algebras, Interscience Tracts in Pure and Applied Mathematics, 10, New York-London: Wiley, 1962. Zbl0121.27504MR143793
  30. KOLMOGOROV, A. N., Zufällige Bewegungen, Ann. of Math., 35 (1934), 116-117. MR1503147JFM60.1159.01
  31. LANCONELLI, E.- POLIDORO, S., On a class of hypoelliptic evolution operators, Rend. Sem. Mat. Univ. Politec. Torino, 52 (1994), 29-63. Zbl0811.35018MR1289901
  32. MONTGOMERY, R.- SHAPIRO, M.- STOLIN, A., A nonintegrable sub-Riemannian geodesic flow on a Carnot group, J. Dyn. Control Syst., 3 (1997), 519-530. Zbl0941.53046MR1481625
  33. MONTI, R.- MORBIDELLI, D., Regular domains in homogeneous spaces, preprint (2001). 
  34. MONTI, R.- SERRA CASSANO, F., Surface measures in Carnot-Carathéodory spaces, Calc. Var. Partial Diff. Eq., 13 (2001), 339-376. Zbl1032.49045MR1865002
  35. OKIKIOLU, K., The Campbell-Hausdorff theorem for elliptic operators and a related trace formula, Duke Math. J., 79 (1995), 687-722. Zbl0854.35137MR1355181
  36. OTEO, J. A., The Baker-Campbell-Hausdorff formula and nested commutator identities, J. Math. Phys., 32 (1991), 419-424. Zbl0725.47052MR1088363
  37. ROTHSCHILD, L. P.- STEIN, E. M., Hypoelliptic differential operators and nilpotent groups, Acta Math., 137 (1976), 247-320. Zbl0346.35030MR436223
  38. STRICHARTZ, R. S., The Campbell-Baker-Hausdorff-Dynkin formula and solutions of differential equations, J. Funct. Anal., 72 (1987), 320-345. Zbl0623.34058MR886816
  39. THOMPSON, R. C., Cyclic relations and the Goldberg coefficients in the Campbell-Baker-Hausdorff formula, Proc. Am. Math. Soc., 86 (1982), 12-14. Zbl0497.17002MR663855
  40. VARADARAJAN, V. S., Lie groups, Lie algebras and their representations, Graduate Texts in Mathematics102, Springer-Verlag, New York, 1984. Zbl0955.22500MR746308
  41. VAROPOULOS, N. T.- SALOFF-COSTE, L.- COULHON, T., Analysis and geometry on groups, Cambridge Tracts in Mathematics100, Cambridge University Press, Cambridge, 1992. Zbl0813.22003MR1218884

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.