Homogeneous Carnot groups related to sets of vector fields
Bollettino dell'Unione Matematica Italiana (2004)
- Volume: 7-B, Issue: 1, page 79-107
- ISSN: 0392-4041
Access Full Article
topAbstract
topHow to cite
topBonfiglioli, Andrea. "Homogeneous Carnot groups related to sets of vector fields." Bollettino dell'Unione Matematica Italiana 7-B.1 (2004): 79-107. <http://eudml.org/doc/195551>.
@article{Bonfiglioli2004,
abstract = {In this paper, we are concerned with the following problem: given a set of smooth vector fields $X_\{1\}, \ldots , X_\{m\}$ on $\mathbb\{R\}^\{N\}$, we ask whether there exists a homogeneous Carnot group $\mathbb\{G\}=(\mathbb\{R\}^\{N\}, \circ, \delta_\{\lambda\} )$ such that $\sum_\{i\} X_\{i\}^\{2\}$ is a sub-Laplacian on $\mathbb\{G\}$. We find necessary and sufficient conditions on the given vector fields in order to give a positive answer to the question. Moreover, we explicitly construct the group law i as above, providing direct proofs. Our main tool is a suitable version of the Campbell-Hausdorff formula. Finally, we exhibit several non-trivial examples of our construction.},
author = {Bonfiglioli, Andrea},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {2},
number = {1},
pages = {79-107},
publisher = {Unione Matematica Italiana},
title = {Homogeneous Carnot groups related to sets of vector fields},
url = {http://eudml.org/doc/195551},
volume = {7-B},
year = {2004},
}
TY - JOUR
AU - Bonfiglioli, Andrea
TI - Homogeneous Carnot groups related to sets of vector fields
JO - Bollettino dell'Unione Matematica Italiana
DA - 2004/2//
PB - Unione Matematica Italiana
VL - 7-B
IS - 1
SP - 79
EP - 107
AB - In this paper, we are concerned with the following problem: given a set of smooth vector fields $X_{1}, \ldots , X_{m}$ on $\mathbb{R}^{N}$, we ask whether there exists a homogeneous Carnot group $\mathbb{G}=(\mathbb{R}^{N}, \circ, \delta_{\lambda} )$ such that $\sum_{i} X_{i}^{2}$ is a sub-Laplacian on $\mathbb{G}$. We find necessary and sufficient conditions on the given vector fields in order to give a positive answer to the question. Moreover, we explicitly construct the group law i as above, providing direct proofs. Our main tool is a suitable version of the Campbell-Hausdorff formula. Finally, we exhibit several non-trivial examples of our construction.
LA - eng
UR - http://eudml.org/doc/195551
ER -
References
top- ALEXOPOULOS, G. K., Sub-Laplacians with drift on Lie groups of polynomial volume growth, Mem. Amer. Math. Soc., 739 (2002). Zbl0994.22006MR1878341
- ALTAFINI, C., A matrix Lie group of Carnot type for filiform sub-Riemannian structures and its application to control systems in chained form, d'Azevedo Breda, A. M. (ed.) et al., Proceedings of the summer school on differential geometry, Coimbra, Portugal, September 1999. Zbl0990.93022MR1859942
- BIRINDELLI, I.- LANCONELLI, E., A note on one dimensional symmetry in Carnot groups, Atti Accad. Naz. Lincei, to appear. Zblpre02216756MR1949145
- BONFIGLIOLI, A.- LANCONELLI, E., Liouville-type theorems for real sub-Laplacians, Manuscripta Math., 105 (2001), 111-124. Zbl1016.35014MR1885817
- BONFIGLIOLI, A.- LANCONELLI, E., Maximum Principle on unbounded domains for sub-Laplacians: a Potential Theory approach, Proc. Amer. Math. Soc., 130 (2002), 2295-2304. Zbl1165.35331MR1896411
- BONFIGLIOLI, A.- LANCONELLI, E., Subharmonic functions on Carnot groups, Math. Ann., to appear. Zbl1017.31003MR1957266
- BONFIGLIOLI, A.- LANCONELLI, E.- UGUZZONI, F., Uniform Gaussian estimates of the fundamental solutions for heat operators on Carnot groups, Adv. Differential Equations, to appear. Zbl1036.35061MR1919700
- BONFIGLIOLI, A.- UGUZZONI, F., Families of diffeomorphic sub-Laplacians and free Carnot groups, Forum Math., to appear. Zbl1065.35102MR2050190
- BONY, J.-M., Principe du maximum, inégalité de Harnack et unicité du problème de Cauchy pour les opérateurs elliptiques dégénérés, Ann. Inst. Fourier (Grenoble), 19 (1969), 277-304. Zbl0176.09703MR262881
- BOURBAKI, N., Lie Groups and Lie Algebras, Chapters 1-3, Elements of Mathematics, Springer-Verlag, Berlin, 1989. Zbl0672.22001MR979493
- BRAMANTI, M.- BRANDOLINI, L., estimates for nonvariational hypoelliptic operators with VMO coefficients, Trans. Amer. Math. Soc., 352 (2000), 781-822. Zbl0935.35037MR1608289
- CAPOGNA, L., Regularity for quasilinear equations and -quasiconformal maps in Carnot groups, Math. Ann., 313 (1999), 263-295. Zbl0927.35024MR1679786
- CORWIN, L. J.- GREENLEAF, F. P., Representations of nilpotent Lie groups and their applications (Part I: Basic theory and examples), Cambridge Studies in Advanced Mathematics, 18Cambridge University Press, Cambridge, 1990. Zbl0704.22007MR1070979
- DAY, J.- SO, W.- THOMPSON, R. C., Some properties of the Campbell Baker Hausdorff series, Linear Multilinear Algebra, 29 (1991), 207-224. Zbl0728.22008MR1119454
- DJOKOVIĆ, D. Ž., An elementary proof of the Baker-Campbell-Hausdorff-Dynkin formula, Math. Z., 143 (1975), 209-211. Zbl0298.22010MR399196
- EGGERT, A., Extending the Campbell-Hausdorff multiplication, Geom. Dedicata, 46 (1993), 35-45. Zbl0778.17002MR1214464
- FOLLAND, G. B., Subelliptic estimates and function spaces on nilpotent Lie groups, Ark. Mat., 13 (1975), 161-207. Zbl0312.35026MR494315
- FOLLAND, G. B.- STEIN, E. M., Hardy spaces on homogeneous groups, Mathematical Notes, 28Princeton University Press, Princeton, N.J., 1982. Zbl0508.42025MR657581
- FRANCHI, B.- FERRARI, F., A local doubling formula for the harmonic measure associated with sub-elliptic operators, preprint (2001).
- FRANCHI, B.- SERAPIONI, R.- SERRA CASSANO, F., Rectifiability and perimeter in the Heisenberg group, Math. Ann., 321 (2001), 479-531. Zbl1057.49032MR1871966
- GAROFALO, N.- VASSILEV, D., Regularity near the characteristic set in the non-linear Dirichlet problem and conformal geometry of sub-Laplacians on Carnot groups, Math. Ann., 318 (2000), 453-516. Zbl1158.35341MR1800766
- GAROFALO, N.- VASSILEV, D., Symmetry properties of positive entire solutions of Yamabe-type equations on groups of Heisenberg type, Duke Math. J., 106 (2001), 411-448. Zbl1012.35014MR1813232
- GRAYSON, M.- GROSSMAN, R., Models for free nilpotent Lie algebras, J. Algebra, 135 (1990), 177-191. Zbl0717.17006MR1076084
- GOLÉ, C.- KARIDI, R., A note on Carnot geodesics in nilpotent Lie groups, J. Dyn. Control Syst., 1 (1995), 535-549. Zbl0941.53029MR1364562
- HAUSNER, M.- SCWARTZ, J. T., Lie groups. Lie algebras, Notes on Mathematics and Its Applications, New York-London-Paris: Gordon and Breach, 1968. Zbl0192.35902MR235065
- HEINONEN, J.- HOLOPAINEN, I., Quasiregular maps on Carnot groups, J. Geom. Anal., 7 (1997), 109-148. Zbl0905.30018MR1630785
- HOCHSCHILD, G., La structure de groupes de Lie, Monographies universitaires de mathématique, 27, Paris: Dunod, 1968. Zbl0157.36502
- HÖRMANDER, L., Hypoelliptic second order differential equations, Acta Math., 119 (1967), 147-171. Zbl0156.10701MR222474
- JACOBSON, N., Lie Algebras, Interscience Tracts in Pure and Applied Mathematics, 10, New York-London: Wiley, 1962. Zbl0121.27504MR143793
- KOLMOGOROV, A. N., Zufällige Bewegungen, Ann. of Math., 35 (1934), 116-117. MR1503147JFM60.1159.01
- LANCONELLI, E.- POLIDORO, S., On a class of hypoelliptic evolution operators, Rend. Sem. Mat. Univ. Politec. Torino, 52 (1994), 29-63. Zbl0811.35018MR1289901
- MONTGOMERY, R.- SHAPIRO, M.- STOLIN, A., A nonintegrable sub-Riemannian geodesic flow on a Carnot group, J. Dyn. Control Syst., 3 (1997), 519-530. Zbl0941.53046MR1481625
- MONTI, R.- MORBIDELLI, D., Regular domains in homogeneous spaces, preprint (2001).
- MONTI, R.- SERRA CASSANO, F., Surface measures in Carnot-Carathéodory spaces, Calc. Var. Partial Diff. Eq., 13 (2001), 339-376. Zbl1032.49045MR1865002
- OKIKIOLU, K., The Campbell-Hausdorff theorem for elliptic operators and a related trace formula, Duke Math. J., 79 (1995), 687-722. Zbl0854.35137MR1355181
- OTEO, J. A., The Baker-Campbell-Hausdorff formula and nested commutator identities, J. Math. Phys., 32 (1991), 419-424. Zbl0725.47052MR1088363
- ROTHSCHILD, L. P.- STEIN, E. M., Hypoelliptic differential operators and nilpotent groups, Acta Math., 137 (1976), 247-320. Zbl0346.35030MR436223
- STRICHARTZ, R. S., The Campbell-Baker-Hausdorff-Dynkin formula and solutions of differential equations, J. Funct. Anal., 72 (1987), 320-345. Zbl0623.34058MR886816
- THOMPSON, R. C., Cyclic relations and the Goldberg coefficients in the Campbell-Baker-Hausdorff formula, Proc. Am. Math. Soc., 86 (1982), 12-14. Zbl0497.17002MR663855
- VARADARAJAN, V. S., Lie groups, Lie algebras and their representations, Graduate Texts in Mathematics102, Springer-Verlag, New York, 1984. Zbl0955.22500MR746308
- VAROPOULOS, N. T.- SALOFF-COSTE, L.- COULHON, T., Analysis and geometry on groups, Cambridge Tracts in Mathematics100, Cambridge University Press, Cambridge, 1992. Zbl0813.22003MR1218884
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.