A Note on one dimensional symmetry in Carnot groups
Isabeau Birindelli; Ermanno Laconelli
- Volume: 13, Issue: 1, page 17-22
- ISSN: 1120-6330
Access Full Article
topAbstract
topHow to cite
topBirindelli, Isabeau, and Laconelli, Ermanno. "A Note on one dimensional symmetry in Carnot groups." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 13.1 (2002): 17-22. <http://eudml.org/doc/252353>.
@article{Birindelli2002,
abstract = {In this Note we extend Gibbons conjecture to Carnot groups using the sliding method and the maximum principle in unbounded domains.},
author = {Birindelli, Isabeau, Laconelli, Ermanno},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Monotony properties; Semi-linear equations; Carnot groups; monotony properties; semi-linear equations},
language = {eng},
month = {3},
number = {1},
pages = {17-22},
publisher = {Accademia Nazionale dei Lincei},
title = {A Note on one dimensional symmetry in Carnot groups},
url = {http://eudml.org/doc/252353},
volume = {13},
year = {2002},
}
TY - JOUR
AU - Birindelli, Isabeau
AU - Laconelli, Ermanno
TI - A Note on one dimensional symmetry in Carnot groups
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 2002/3//
PB - Accademia Nazionale dei Lincei
VL - 13
IS - 1
SP - 17
EP - 22
AB - In this Note we extend Gibbons conjecture to Carnot groups using the sliding method and the maximum principle in unbounded domains.
LA - eng
KW - Monotony properties; Semi-linear equations; Carnot groups; monotony properties; semi-linear equations
UR - http://eudml.org/doc/252353
ER -
References
top- Ambrosio, L. - Cabré, X., Entire solutions of semilinear elliptic equations in and a conjecture of De Giorgi. J. Amer. Math. Soc., 13, 2000, 725-739. Zbl0968.35041MR1775735DOI10.1090/S0894-0347-00-00345-3
- Barlow, M.T. - Bass, R.F. - Gui, C., The Liouville property and a conjecture of De Giorgi. Comm. Pure Appl. Math., 53, 2000, n. 8, 1007-1038. Zbl1072.35526MR1755949DOI10.1002/1097-0312(200008)53:8<1007::AID-CPA3>3.3.CO;2-L
- Berestycki, H. - Caffarelli, L. - Nirenberg, L., Monotonicity for Elliptic Equations in Unbounded Domains. Comm. Pure Appl. Math., 50, 1997, 1088-1111. Zbl0906.35035MR1470317DOI10.1002/(SICI)1097-0312(199711)50:11<1089::AID-CPA2>3.0.CO;2-6
- Berestycki, H. - Hamel, F. - Monneau, R., One-dimensional symmetry of bounded entire solutions of some elliptic equations. Duke Math. J., 103, 2000, n. 3, 375-396. Zbl0954.35056MR1763653DOI10.1215/S0012-7094-00-10331-6
- Berestycki, H. - Nirenberg, L., On the method of moving planes and the sliding method. Bol. Soc. Bras. Mat., vol. 22, 1991, 1-37. Zbl0784.35025MR1159383DOI10.1007/BF01244896
- Birindelli, I. - Prajapat, J., One dimensional symmetry in the Heisenberg group. Ann. Scuola Normale Superiore di Pisa, to appear. Zbl1014.35019MR1895712
- Bonfiglioli, A. - Lanconelli, E., Maximum Principle on unbounded domains for sub-Laplacians: a Potential Theory approach. Preprint. Zbl1165.35331MR1896411DOI10.1090/S0002-9939-02-06569-3
- Farina, A., Symmetry for solutions of semilinear elliptic equations in and related conjectures. Ricerche di Matematica, XLVIII, 1999, 129-154. Zbl0940.35084MR1765681
- Ghoussoub, N. - Gui, C., On a conjecture of De Giorgi and some related problems. Math. Ann., 311, 1998, 481-491. Zbl0918.35046MR1637919DOI10.1007/s002080050196
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.