Construction of a natural norm for the convection-diffusion-reaction operator
Bollettino dell'Unione Matematica Italiana (2004)
- Volume: 7-B, Issue: 2, page 335-355
- ISSN: 0392-4041
Access Full Article
topAbstract
topHow to cite
topSangalli, Giancarlo. "Construction of a natural norm for the convection-diffusion-reaction operator." Bollettino dell'Unione Matematica Italiana 7-B.2 (2004): 335-355. <http://eudml.org/doc/195554>.
@article{Sangalli2004,
abstract = {In this work, we construct, by means of the function space interpolation theory, a natural norm for a generic linear coercive and non-symmetric operator. We look for a norm which is the counterpart of the energy norm for symmetric operators. The natural norm allows for continuity and inf-sup conditions independent of the operator. Particularly we consider the convection-diffusion-reaction operator, for which we obtain continuity and inf-sup conditions that are uniform with respect to the operator coefficients, and therefore meaningful in the convectiondominant regime. Our results are preliminary to a deeper understanding and analysis of the numerical techniques for non-symmetric problems.},
author = {Sangalli, Giancarlo},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {6},
number = {2},
pages = {335-355},
publisher = {Unione Matematica Italiana},
title = {Construction of a natural norm for the convection-diffusion-reaction operator},
url = {http://eudml.org/doc/195554},
volume = {7-B},
year = {2004},
}
TY - JOUR
AU - Sangalli, Giancarlo
TI - Construction of a natural norm for the convection-diffusion-reaction operator
JO - Bollettino dell'Unione Matematica Italiana
DA - 2004/6//
PB - Unione Matematica Italiana
VL - 7-B
IS - 2
SP - 335
EP - 355
AB - In this work, we construct, by means of the function space interpolation theory, a natural norm for a generic linear coercive and non-symmetric operator. We look for a norm which is the counterpart of the energy norm for symmetric operators. The natural norm allows for continuity and inf-sup conditions independent of the operator. Particularly we consider the convection-diffusion-reaction operator, for which we obtain continuity and inf-sup conditions that are uniform with respect to the operator coefficients, and therefore meaningful in the convectiondominant regime. Our results are preliminary to a deeper understanding and analysis of the numerical techniques for non-symmetric problems.
LA - eng
UR - http://eudml.org/doc/195554
ER -
References
top- BARINKA, A.- BARSCH, T.- CHARTON, P.- COHEN, A.- DAHLKE, S.- DAHMEN, W.- URBAN, K., Adaptive wavelet schemes for elliptic problems-implementation and numerical experiments, SIAM J. Sci. Comput., 23 (2001), 910-939 (electronic). Zbl1016.65090MR1860970
- BERTOLUZZA, S.- CANUTO, C.- TABACCO, A., Stable discretizations of convection-diffusion problems via computable negative-order inner products, SIAM J. Numer. Anal., 38 (2000), 1034-1055 (electronic). Zbl0974.65104MR1781214
- BERTOLUZZA, S.- VERANI, M., Convergence of a nonlinear wavelet algorithm for the solution of PDEs, Appl. Math. Lett., 16 (2003), 113-118. Zbl1020.65077MR1938199
- BRAMBLE, J. H.- LAZAROV, R. D.- PASCIAK, J. E., Least-squares for second-order elliptic problems, Comput. Methods Appl. Mech. Engrg., 152 (1998), 195-210. Symposium on Advances in Computational Mechanics, Vol. 5 (Austin, TX, 1997). Zbl0944.65119MR1602783
- BREZZI, F.- FORTIN, M., Mixed and hybrid finite element methods, Springer-Verlag, New York, 1991. Zbl0788.73002MR1115205
- COHEN, A.- DAHMEN, W.- DEVORE, R., Adaptive wavelet methods for elliptic operator equations: convergence rates, Math. Comp., 70 (2001), 27-75 (electronic). Zbl0980.65130MR1803124
- COHEN, A.- DAHMEN, W.- DEVORE, R., Adaptive wavelet methods. II. Beyond the elliptic case, Found. Comput. Math., 2 (2002), 203-245. Zbl1025.65056MR1907380
- DAHMEN, W.- KUNOTH, A.- SCHNEIDER, R., Wavelet least squares methods for boundary value problems, SIAM J. Numer. Anal., 39 (2002), 1985-2013 (electronic). Zbl1013.65124MR1897946
- DÖRFLER, W., Uniform a priori estimates for singularly perturbed elliptic equations in multidimensions, SIAM J. Numer. Anal., 36 (1999), 1878-1900 (electronic). Zbl0979.35016MR1712153
- GOERING, H.- FELGENHAUER, A.- LUBE, G.- ROOS, H.-G.- TOBISKA, L., Singularly perturbed differential equations, vol. 13 of Reihe Math. Research, Akademie-Verlag, Berlin, 1983. Zbl0522.35003MR718115
- LIONS, J.-L.- MAGENES, E., Non-homogeneous boundary value problems and applications. Vol. I, Springer-Verlag, New York, 1972. Translated from the French by P. Kenneth, Die Grundlehren der mathematischen Wissenschaften, Band 181. Zbl0223.35039MR350177
- SANGALLI, G., Analysis of the advection-diffusion operator using fractional order norms, Tech. Rep. 1221, I.A.N.-C.N.R., 2001. Accepted on Numer. Math. Zbl1063.65127MR2127932
- SANGALLI, G., Quasi-optimality of the SUPG method for the one-dimensional advection-diffusion problem, Tech. Rep. 1222, I.A.N.-C.N.R., 2001. Accepted on SIAM J. Numer. Anal. Zbl1058.65080MR2034892
- SANGALLI, G., A uniform analysis of non-symmetric and coercive linear operators, Tech. Rep. 23-PV, I.M.A.T.I.-C.N.R., 2003. Submitted to SIAM J. Math. Anal. Zbl1114.35060
- TRIEBEL, H., Interpolation theory, function spaces, differential operators, Johann Ambrosius Barth, Heidelberg, second ed., 1995. Zbl0830.46028MR1328645
- VERFÜRTH, R., Robust a posteriori error estimators for a singularly perturbed reaction-diffusion equation, Numer. Math., 78 (1998), 479-493. Zbl0887.65108MR1603287
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.