Existence of multiple principal eigenvalues for some indefinite linear eigenvalue problems
J. Fleckinger; J. Hernández; F. Thélin
Bollettino dell'Unione Matematica Italiana (2004)
- Volume: 7-B, Issue: 1, page 159-188
- ISSN: 0392-4041
Access Full Article
topAbstract
topHow to cite
topFleckinger, J., Hernández, J., and Thélin, F.. "Existence of multiple principal eigenvalues for some indefinite linear eigenvalue problems." Bollettino dell'Unione Matematica Italiana 7-B.1 (2004): 159-188. <http://eudml.org/doc/195615>.
@article{Fleckinger2004,
abstract = {We study the existence of principal eigenvalues for differential operators of second order which are not necessarily in divergence form. We obtain results concerning multiplicity of principal eigenvalues in both the variational and the general case. Our approach uses systematically the Krein-Rutman theorem and fixed point arguments for the spectral radius of some associated problems. We also use a variational characterization for both the self-adjoint and the general case.},
author = {Fleckinger, J., Hernández, J., Thélin, F.},
journal = {Bollettino dell'Unione Matematica Italiana},
keywords = {second order differential operator; eigenvalue; eigenfunction; principal eigenvalue; Krein-Rutman theorem; fixed point theorem; spectral radius},
language = {eng},
month = {2},
number = {1},
pages = {159-188},
publisher = {Unione Matematica Italiana},
title = {Existence of multiple principal eigenvalues for some indefinite linear eigenvalue problems},
url = {http://eudml.org/doc/195615},
volume = {7-B},
year = {2004},
}
TY - JOUR
AU - Fleckinger, J.
AU - Hernández, J.
AU - Thélin, F.
TI - Existence of multiple principal eigenvalues for some indefinite linear eigenvalue problems
JO - Bollettino dell'Unione Matematica Italiana
DA - 2004/2//
PB - Unione Matematica Italiana
VL - 7-B
IS - 1
SP - 159
EP - 188
AB - We study the existence of principal eigenvalues for differential operators of second order which are not necessarily in divergence form. We obtain results concerning multiplicity of principal eigenvalues in both the variational and the general case. Our approach uses systematically the Krein-Rutman theorem and fixed point arguments for the spectral radius of some associated problems. We also use a variational characterization for both the self-adjoint and the general case.
LA - eng
KW - second order differential operator; eigenvalue; eigenfunction; principal eigenvalue; Krein-Rutman theorem; fixed point theorem; spectral radius
UR - http://eudml.org/doc/195615
ER -
References
top- AGMON, S.- DOUGLIS, A.- NIRENBERG, L., Estimates near the Boundary for Solutions of Elliptic Partial Differential Equations Satisfying General Boundary Conditions, I, Comm. Pure Appl. Math., 12 (1959), 623-727. Zbl0093.10401MR125307
- ALAMA, S.- TARANTELLO, G., On the solvability of a semilinear elliptic equation via an associate eigenvalue problem, Math. Z., 221 (1996), 467-493. Zbl0853.35039MR1381593
- ALAMA, S.- TARANTELLO, G., Elliptic problems with nonlinearities indefinite in sign, J. Funct. Anal., 141 (1996), 159-215. Zbl0860.35032MR1414377
- ALLEGRETTO, W., Second Order Elliptic Equations with Degenerate Weight, Proc. Amer. Math. Soc., 107,4 (1989), 989-998. Zbl0703.35134MR977929
- ALLEGRETTO, W.- SIEGEL, D., Picone's identity and the moving plane procedure, Electron. J. Differential Equations, 14 (1995), 1-13. Zbl0885.35004MR1353292
- AMANN, H., Fixed Point Equations and Nonlinear Eigenvalue Problems in Ordered Banach Spaces, SIAM Review, 18 (1976), 620-709. Zbl0345.47044MR415432
- ANANE, A., Simplicité et isolation de la première valeur propre du -Laplacien avec poids, C. R. Acad. Sc. Paris, 305 (1987), 725-728. Zbl0633.35061MR920052
- BERESTYCKI, H.- NIRENBERG, L.- VARADHAN, S. R. S., The Principal Eigenvalue and Maximum Principle for Second-Order Elliptic Operators in General Domains, Comm. Pure Appl. Math., 47 (1994), 47-92. Zbl0806.35129MR1258192
- BIRINDELLI, I., Hopf's Lemma and Anti-Maximum Principle in General Domains, J. Diff. Eq., 119 (1995), 450-472. Zbl0831.35114MR1340547
- BIRINDELLI, I.- MITIDIERI, E.- SWEERS, G., Existence of the Principal Eigenvalue for Cooperative Elliptic Systems in a General Domain (Russian) Differ. Uravn., 35 (1999), 325-333,425. Translations in Diff. Eq., 35 (1999), 326-334. Zbl0940.35147MR1726799
- BREZIS, H.- KATO, T., Remarks on the Schrödinger operator with singular complex potentials, J. Math. Pures et Appliquées, 58 (1979), 137-151. Zbl0408.35025MR539217
- BROWN, K. J.- LIN, C. C., On the Existence of Positive Eigenfunctions for an Eigenvalue Problem with Indefinite Weight-Function, J. Math. Anal. Appl., 75 (1980), 112-120. Zbl0437.35058MR576277
- CANO-CASANOVA, S. - LOPEZ GOMEZ, J., Properties of the principal eigenvalues of a general class of non-classical mixed boundary value problems, J. Diff. Eq., 178 (2002), 123-211. Zbl1086.35073MR1878528
- CHANG, K. C., Principal Eigenvalue for Weight Matrix in Elliptic Systems, Research Report 49, Inst. of Math. Peking Univ., 1999. Zbl1194.35135
- COURANT, R.- HILBERT, D., Methods of Mathematical Physics, 2, Wiley-Interscience, New York, 1962. Zbl0099.29504
- DANCER, E. N., On the Indices of Fixed Points of Mappings in Cones and Applications, J. Math. Anal. Appl., 91 (1983), 131-151. Zbl0512.47045MR688538
- DANCER, E. N., Multiple Fixed Points of Positive Mappings, J. Reine Angew. Math., 37 (1986), 46-66. Zbl0597.47034MR859319
- DANCER, E. N., Some Remarks on Classical Problems and Fine Properties of Sobolev Spaces, Diff. Int. Eq., 9 (1996), 437-446. Zbl0853.35011MR1371700
- DANERS, D.- KOCH-MEDINA, P., Abstract evolution equations, periodic problems and applications, Longman Research Notes, 279 (1992). Zbl0789.35001MR1204883
- DE FIGUEIREDO, D. G., Positive Solutions of Semilinear Equations, Lecture Notes in Math., 947, Springer, 34-87. Zbl0506.35038
- FLECKINGER, J.- HERNÁNDEZ, J.- DE THÉLIN, F., On the Existence of Multiple Principal Eigenvalues for some Indefinite Linear Eigenvalue problems, preprint, 2002. Zbl1061.35059
- FLECKINGER, J.- MINGARELLI, A. B., On the Eigenvalues of Non-Definite Elliptic Operators, Maths. Studies, 92, North Holland (1983), 219-227. Zbl0559.35055MR799351
- GESZTESY, F.- GURARIE, D.- HOLDEN, H.- KLAUS, H.- SADUN, L.- SIMON, B.- VOGEL, P., Trapping and cascading of eigenvalues in the large coupling limit, Comm. Math. Phys., 118 (1988), 597-634. Zbl0669.35085MR962490
- GILBARG, D.- TRUDINGER, N. S., Elliptic Partial Differential Equations of Second Order, Springer, Berlin, 1977. Zbl0361.35003MR473443
- HEALY, T. J.- KIELHOFER, H.- STUART, C. A., Global branches of positive weak solutions of semilinear elliptic problems over non smooth domains, Proc. Royal Soc. Edinburgh, 124A (1994), 371-388. Zbl0801.35004MR1273755
- HERNÁNDEZ, J.- MANCEBO, F.- VEGA DE PRADA, J. M., On the Linearization of Some Singular Nonlinear Elliptic Problems and Applications, Ann. I.H.P., Anal. non lin., 19 (2002), 777-813. Zbl1020.35065MR1939086
- HESS, P., Periodic-Parabolic Value Problems and Positivity, Pitman Research Notes, 247 (1991). Zbl0731.35050
- HESS, P.- KATO, T., On some Nonlinear Eigenvalue Problems with an indefinite weight-function, Comm. Part. Diff. Eq., 5 (1980), 999-1030. Zbl0477.35075MR588690
- KATO, T., Perturbation Theory for Linear Operators, Springer, Berlin, 1966. Zbl0148.12601
- KREIN, M. G.- RUTMAN, M. A., Linear Operators Leaving Invariant a Cone in a Banach Space, Uspekhi Math. Nauk. (N.S.) 3 (1948), 3-95; A. M. S. Transl., 26 (1950), 1-128. Zbl0030.12902
- LÓPEZ-GÓMEZ, J., On Linear Weighted Boundary Value Problems, In G. Lumer, S. Nicaise, B. W. Schulze (eds), Partial Differential Equations Models in Physics and Biology, Akademie Verlag, Berlin, 1994, 188-203. Zbl0815.35014MR1322747
- LÓPEZ-GÓMEZ, J., The Maximum Principle and the Existence of Principal Eigenvalues for Some Linear Weighted Boundary Value Problems, J. Diff. Eq., 127 (1996), 263-294. Zbl0853.35078MR1387266
- MANES, A.- MICHELETTI, A. M., Un Estensione della Teoria Variazionale Classica degli Autovalori per Operatori Ellittici del Secondo Ordine, Boll. Un. Matem. Ital., 7 (1973), 285-301. Zbl0275.49042MR344663
- DE PAGTER, B., Irreducible Compact Operators, Math. Zeit., 192 (1986), 149-153. Zbl0607.47033MR835399
- PROTTER, M. H.- WEINBERGER, H. F., Maximum Principles in Differential Equations, Englewood-Cliffs, Prentice Hall, 1967. Zbl0153.13602MR219861
- SCHAEFER, H. H., Topological Vector Spaces, Springer, Berlin, 1971 (5th edition, 1986). Zbl0217.16002MR342978
- SMOLLER, J., Shock-Waves and Reaction-Diffusion Equations, Springer, Berlin, 1983. Zbl0508.35002MR688146
- STAMPACCHIA, G., Equations elliptiques du second ordre a coefficients discontinus, Univ. Montreal Press, Montreal, 1966. Zbl0151.15501MR251373
- TAKAC., P., A Short Elementary Proof of the Krein-Rutman Theorem, Houston J. Math., 20 (1994), 93-98. Zbl0815.47048MR1272563
- TAKAC., P., Convergence in the Part Metric for Discrete Dynamical Systems in Ordered Topological Cones, Nonlinear Anal. TMA, 26 (1996), 1753-1777. Zbl0864.47031MR1382543
- WEINBERGER, H. F., Variational Methods for Eigenvalue Approximation, CMBS Regional Conf. Ser. Appl. Math., Vol. 15, SIAM, Philadelphia, 1974. Zbl0296.49033MR400004
- ZERNER, M., Quelques proprietes spectrales des operateurs positifs, J. Funct. Anal. (1987), 381-417. Zbl0642.47031MR886819
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.