Existence of multiple principal eigenvalues for some indefinite linear eigenvalue problems

J. Fleckinger; J. Hernández; F. Thélin

Bollettino dell'Unione Matematica Italiana (2004)

  • Volume: 7-B, Issue: 1, page 159-188
  • ISSN: 0392-4041

Abstract

top
We study the existence of principal eigenvalues for differential operators of second order which are not necessarily in divergence form. We obtain results concerning multiplicity of principal eigenvalues in both the variational and the general case. Our approach uses systematically the Krein-Rutman theorem and fixed point arguments for the spectral radius of some associated problems. We also use a variational characterization for both the self-adjoint and the general case.

How to cite

top

Fleckinger, J., Hernández, J., and Thélin, F.. "Existence of multiple principal eigenvalues for some indefinite linear eigenvalue problems." Bollettino dell'Unione Matematica Italiana 7-B.1 (2004): 159-188. <http://eudml.org/doc/195615>.

@article{Fleckinger2004,
abstract = {We study the existence of principal eigenvalues for differential operators of second order which are not necessarily in divergence form. We obtain results concerning multiplicity of principal eigenvalues in both the variational and the general case. Our approach uses systematically the Krein-Rutman theorem and fixed point arguments for the spectral radius of some associated problems. We also use a variational characterization for both the self-adjoint and the general case.},
author = {Fleckinger, J., Hernández, J., Thélin, F.},
journal = {Bollettino dell'Unione Matematica Italiana},
keywords = {second order differential operator; eigenvalue; eigenfunction; principal eigenvalue; Krein-Rutman theorem; fixed point theorem; spectral radius},
language = {eng},
month = {2},
number = {1},
pages = {159-188},
publisher = {Unione Matematica Italiana},
title = {Existence of multiple principal eigenvalues for some indefinite linear eigenvalue problems},
url = {http://eudml.org/doc/195615},
volume = {7-B},
year = {2004},
}

TY - JOUR
AU - Fleckinger, J.
AU - Hernández, J.
AU - Thélin, F.
TI - Existence of multiple principal eigenvalues for some indefinite linear eigenvalue problems
JO - Bollettino dell'Unione Matematica Italiana
DA - 2004/2//
PB - Unione Matematica Italiana
VL - 7-B
IS - 1
SP - 159
EP - 188
AB - We study the existence of principal eigenvalues for differential operators of second order which are not necessarily in divergence form. We obtain results concerning multiplicity of principal eigenvalues in both the variational and the general case. Our approach uses systematically the Krein-Rutman theorem and fixed point arguments for the spectral radius of some associated problems. We also use a variational characterization for both the self-adjoint and the general case.
LA - eng
KW - second order differential operator; eigenvalue; eigenfunction; principal eigenvalue; Krein-Rutman theorem; fixed point theorem; spectral radius
UR - http://eudml.org/doc/195615
ER -

References

top
  1. AGMON, S.- DOUGLIS, A.- NIRENBERG, L., Estimates near the Boundary for Solutions of Elliptic Partial Differential Equations Satisfying General Boundary Conditions, I, Comm. Pure Appl. Math., 12 (1959), 623-727. Zbl0093.10401MR125307
  2. ALAMA, S.- TARANTELLO, G., On the solvability of a semilinear elliptic equation via an associate eigenvalue problem, Math. Z., 221 (1996), 467-493. Zbl0853.35039MR1381593
  3. ALAMA, S.- TARANTELLO, G., Elliptic problems with nonlinearities indefinite in sign, J. Funct. Anal., 141 (1996), 159-215. Zbl0860.35032MR1414377
  4. ALLEGRETTO, W., Second Order Elliptic Equations with Degenerate Weight, Proc. Amer. Math. Soc., 107,4 (1989), 989-998. Zbl0703.35134MR977929
  5. ALLEGRETTO, W.- SIEGEL, D., Picone's identity and the moving plane procedure, Electron. J. Differential Equations, 14 (1995), 1-13. Zbl0885.35004MR1353292
  6. AMANN, H., Fixed Point Equations and Nonlinear Eigenvalue Problems in Ordered Banach Spaces, SIAM Review, 18 (1976), 620-709. Zbl0345.47044MR415432
  7. ANANE, A., Simplicité et isolation de la première valeur propre du p -Laplacien avec poids, C. R. Acad. Sc. Paris, 305 (1987), 725-728. Zbl0633.35061MR920052
  8. BERESTYCKI, H.- NIRENBERG, L.- VARADHAN, S. R. S., The Principal Eigenvalue and Maximum Principle for Second-Order Elliptic Operators in General Domains, Comm. Pure Appl. Math., 47 (1994), 47-92. Zbl0806.35129MR1258192
  9. BIRINDELLI, I., Hopf's Lemma and Anti-Maximum Principle in General Domains, J. Diff. Eq., 119 (1995), 450-472. Zbl0831.35114MR1340547
  10. BIRINDELLI, I.- MITIDIERI, E.- SWEERS, G., Existence of the Principal Eigenvalue for Cooperative Elliptic Systems in a General Domain (Russian) Differ. Uravn., 35 (1999), 325-333,425. Translations in Diff. Eq., 35 (1999), 326-334. Zbl0940.35147MR1726799
  11. BREZIS, H.- KATO, T., Remarks on the Schrödinger operator with singular complex potentials, J. Math. Pures et Appliquées, 58 (1979), 137-151. Zbl0408.35025MR539217
  12. BROWN, K. J.- LIN, C. C., On the Existence of Positive Eigenfunctions for an Eigenvalue Problem with Indefinite Weight-Function, J. Math. Anal. Appl., 75 (1980), 112-120. Zbl0437.35058MR576277
  13. CANO-CASANOVA, S. - LOPEZ GOMEZ, J., Properties of the principal eigenvalues of a general class of non-classical mixed boundary value problems, J. Diff. Eq., 178 (2002), 123-211. Zbl1086.35073MR1878528
  14. CHANG, K. C., Principal Eigenvalue for Weight Matrix in Elliptic Systems, Research Report 49, Inst. of Math. Peking Univ., 1999. Zbl1194.35135
  15. COURANT, R.- HILBERT, D., Methods of Mathematical Physics, 2, Wiley-Interscience, New York, 1962. Zbl0099.29504
  16. DANCER, E. N., On the Indices of Fixed Points of Mappings in Cones and Applications, J. Math. Anal. Appl., 91 (1983), 131-151. Zbl0512.47045MR688538
  17. DANCER, E. N., Multiple Fixed Points of Positive Mappings, J. Reine Angew. Math., 37 (1986), 46-66. Zbl0597.47034MR859319
  18. DANCER, E. N., Some Remarks on Classical Problems and Fine Properties of Sobolev Spaces, Diff. Int. Eq., 9 (1996), 437-446. Zbl0853.35011MR1371700
  19. DANERS, D.- KOCH-MEDINA, P., Abstract evolution equations, periodic problems and applications, Longman Research Notes, 279 (1992). Zbl0789.35001MR1204883
  20. DE FIGUEIREDO, D. G., Positive Solutions of Semilinear Equations, Lecture Notes in Math., 947, Springer, 34-87. Zbl0506.35038
  21. FLECKINGER, J.- HERNÁNDEZ, J.- DE THÉLIN, F., On the Existence of Multiple Principal Eigenvalues for some Indefinite Linear Eigenvalue problems, preprint, 2002. Zbl1061.35059
  22. FLECKINGER, J.- MINGARELLI, A. B., On the Eigenvalues of Non-Definite Elliptic Operators, Maths. Studies, 92, North Holland (1983), 219-227. Zbl0559.35055MR799351
  23. GESZTESY, F.- GURARIE, D.- HOLDEN, H.- KLAUS, H.- SADUN, L.- SIMON, B.- VOGEL, P., Trapping and cascading of eigenvalues in the large coupling limit, Comm. Math. Phys., 118 (1988), 597-634. Zbl0669.35085MR962490
  24. GILBARG, D.- TRUDINGER, N. S., Elliptic Partial Differential Equations of Second Order, Springer, Berlin, 1977. Zbl0361.35003MR473443
  25. HEALY, T. J.- KIELHOFER, H.- STUART, C. A., Global branches of positive weak solutions of semilinear elliptic problems over non smooth domains, Proc. Royal Soc. Edinburgh, 124A (1994), 371-388. Zbl0801.35004MR1273755
  26. HERNÁNDEZ, J.- MANCEBO, F.- VEGA DE PRADA, J. M., On the Linearization of Some Singular Nonlinear Elliptic Problems and Applications, Ann. I.H.P., Anal. non lin., 19 (2002), 777-813. Zbl1020.35065MR1939086
  27. HESS, P., Periodic-Parabolic Value Problems and Positivity, Pitman Research Notes, 247 (1991). Zbl0731.35050
  28. HESS, P.- KATO, T., On some Nonlinear Eigenvalue Problems with an indefinite weight-function, Comm. Part. Diff. Eq., 5 (1980), 999-1030. Zbl0477.35075MR588690
  29. KATO, T., Perturbation Theory for Linear Operators, Springer, Berlin, 1966. Zbl0148.12601
  30. KREIN, M. G.- RUTMAN, M. A., Linear Operators Leaving Invariant a Cone in a Banach Space, Uspekhi Math. Nauk. (N.S.) 3 (1948), 3-95; A. M. S. Transl., 26 (1950), 1-128. Zbl0030.12902
  31. LÓPEZ-GÓMEZ, J., On Linear Weighted Boundary Value Problems, In G. Lumer, S. Nicaise, B. W. Schulze (eds), Partial Differential Equations Models in Physics and Biology, Akademie Verlag, Berlin, 1994, 188-203. Zbl0815.35014MR1322747
  32. LÓPEZ-GÓMEZ, J., The Maximum Principle and the Existence of Principal Eigenvalues for Some Linear Weighted Boundary Value Problems, J. Diff. Eq., 127 (1996), 263-294. Zbl0853.35078MR1387266
  33. MANES, A.- MICHELETTI, A. M., Un Estensione della Teoria Variazionale Classica degli Autovalori per Operatori Ellittici del Secondo Ordine, Boll. Un. Matem. Ital., 7 (1973), 285-301. Zbl0275.49042MR344663
  34. DE PAGTER, B., Irreducible Compact Operators, Math. Zeit., 192 (1986), 149-153. Zbl0607.47033MR835399
  35. PROTTER, M. H.- WEINBERGER, H. F., Maximum Principles in Differential Equations, Englewood-Cliffs, Prentice Hall, 1967. Zbl0153.13602MR219861
  36. SCHAEFER, H. H., Topological Vector Spaces, Springer, Berlin, 1971 (5th edition, 1986). Zbl0217.16002MR342978
  37. SMOLLER, J., Shock-Waves and Reaction-Diffusion Equations, Springer, Berlin, 1983. Zbl0508.35002MR688146
  38. STAMPACCHIA, G., Equations elliptiques du second ordre a coefficients discontinus, Univ. Montreal Press, Montreal, 1966. Zbl0151.15501MR251373
  39. TAKAC., P., A Short Elementary Proof of the Krein-Rutman Theorem, Houston J. Math., 20 (1994), 93-98. Zbl0815.47048MR1272563
  40. TAKAC., P., Convergence in the Part Metric for Discrete Dynamical Systems in Ordered Topological Cones, Nonlinear Anal. TMA, 26 (1996), 1753-1777. Zbl0864.47031MR1382543
  41. WEINBERGER, H. F., Variational Methods for Eigenvalue Approximation, CMBS Regional Conf. Ser. Appl. Math., Vol. 15, SIAM, Philadelphia, 1974. Zbl0296.49033MR400004
  42. ZERNER, M., Quelques proprietes spectrales des operateurs positifs, J. Funct. Anal. (1987), 381-417. Zbl0642.47031MR886819

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.