On the linearization of some singular, nonlinear elliptic problems and applications
Jesús Hernández; Francisco J Mancebo; José M Vega
Annales de l'I.H.P. Analyse non linéaire (2002)
- Volume: 19, Issue: 6, page 777-813
- ISSN: 0294-1449
Access Full Article
topHow to cite
topHernández, Jesús, Mancebo, Francisco J, and Vega, José M. "On the linearization of some singular, nonlinear elliptic problems and applications." Annales de l'I.H.P. Analyse non linéaire 19.6 (2002): 777-813. <http://eudml.org/doc/78562>.
@article{Hernández2002,
author = {Hernández, Jesús, Mancebo, Francisco J, Vega, José M},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {semilinear problem; linearization; spectrum; existence; uniqueness; principal eigenvalue; Green operator; Fréchet differentiability},
language = {eng},
number = {6},
pages = {777-813},
publisher = {Elsevier},
title = {On the linearization of some singular, nonlinear elliptic problems and applications},
url = {http://eudml.org/doc/78562},
volume = {19},
year = {2002},
}
TY - JOUR
AU - Hernández, Jesús
AU - Mancebo, Francisco J
AU - Vega, José M
TI - On the linearization of some singular, nonlinear elliptic problems and applications
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2002
PB - Elsevier
VL - 19
IS - 6
SP - 777
EP - 813
LA - eng
KW - semilinear problem; linearization; spectrum; existence; uniqueness; principal eigenvalue; Green operator; Fréchet differentiability
UR - http://eudml.org/doc/78562
ER -
References
top- [1] Adams R.A., Sobolev Spaces, Academic Press, 1975. Zbl0314.46030MR450957
- [2] Agmon S., Douglis A., Nirenberg L., Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions I, Comm. Pure Appl. Math.12 (1959) 623-727. Zbl0093.10401MR125307
- [3] Amann H., Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces, SIAM Rev.18 (1976) 620-709. Zbl0345.47044MR415432
- [4] Ambrosetti A., Brezis H., Cerami G., Combined effects of concave and convex nonlinearities in some elliptic problems, J. Funct. Anal.122 (1994) 519-543. Zbl0805.35028MR1276168
- [5] Aronson D., Crandall M.G., Peletier L.A., Stabilization of solutions of a degenerate nonlinear diffusion problem, Nonlinear Analysis TMA16 (1982) 1001-1022. Zbl0518.35050MR678053
- [6] Bandle C., Pozio M.A., Tesei A., The asymptotic behavior of the solutions of degenerate parabolic equations, Trans. Amer. Math. Soc.303 (1987) 487-501. Zbl0633.35041MR902780
- [7] Berestycki H., Nirenberg L., Varadhan S.R.S., The principal eigenvalue and maximum principle for second-order elliptic operators in general domains, Comm. Pure Appl. Math.47 (1994) 47-92. Zbl0806.35129MR1258192
- [8] Bertsch M., Rostamian R., The principle of linearized stability for a class of degenerate diffusion equations, J. Differential Equations57 (1985) 373-405. Zbl0583.35061MR790282
- [9] Boccardo L., Orsina L., Sublinear elliptic equations in L1, Houston Math. J.20 (1994) 99-114. Zbl0803.35047MR1272564
- [10] Brezis H., Kamin S., Sublinear elliptic equations in Rn, Manuscripta Math.74 (1992) 87-106. Zbl0761.35027MR1141779
- [11] Brezis H., Oswald L., Remarks on sublinear elliptic equations, Nonlinear Analysis TMA10 (1986) 55-64. Zbl0593.35045MR820658
- [12] Chow S.N., Hale J.K., Methods of Bifurcation Theory, Springer-Verlag, 1982. Zbl0487.47039MR660633
- [13] Clément Ph., de Figueiredo D.G., Mitidieri E., A priori estimates for positive solutions of semilinear elliptic systems via Hardy–Sobolev inequalities, Pitman Research Notes343 (1996) 73-91. Zbl0868.35012MR1417272
- [14] Cohen D., Laetsch T., Nonlinear boundary value problems suggested by chemical reactor theory, J. Differential Equations7 (1970) 217-226. Zbl0201.43102MR259356
- [15] Crandall M.G., An introduction to constructive aspects of bifurcation and the implicit function theorem, in: Rabinowitz P.H. (Ed.), Applications of Bifurcation Theory, Academic Press, New York, 1977, pp. 1-35. MR463988
- [16] Crandall M.G., Rabinowitz P.H., Bifurcation from simple eigenvalues, J. Funct. Anal.8 (1971) 321-340. Zbl0219.46015MR288640
- [17] Crandall M.G., Rabinowitz P.H., Bifurcation, perturbation of simple eigenvalues, and linearized stability, Arch. Rat. Mech. Anal.52 (1973) 161-180. Zbl0275.47044MR341212
- [18] Crandall M.G., Rabinowitz P.H., Tartar L., On a Dirichlet problem with a singular nonlinearity, Comm. Partial Differential Equations2 (1977) 193-222. Zbl0362.35031MR427826
- [19] Dautray R., Lions J.L., Mathematical Analysis and Numerical Methods for Science and Technology, Vol. 3, Springer-Verlag, Berlin, 1990. Zbl0766.47001MR1064315
- [20] Díaz J.I., Nonlinear Partial Differential Equations and Free Boundaries, Pitman, Boston, 1985. Zbl0595.35100MR908901
- [21] Dieudonné J., Foundations of Modern Analysis, Academic Press, New York, 1960. Zbl0100.04201MR120319
- [22] Donsker M., Varadhan S.R.S., On the principal eigenvalue of second-order elliptic differential operators, Comm. Pure Appl. Math.29 (1976) 595-621. Zbl0356.35065MR425380
- [23] Faber C., Beweis das unter allen homogenen membranen von gleicher fläche und gleicher spannung die kreisförmige den tiefsten grundton gibt, Sitzunsber, Bayer. Akad. der Wiss. Math. Phys. (1923) 169-172. Zbl49.0342.03JFM49.0342.03
- [24] Fulks W., Maybee J.S., A singular nonlinear equation, Osaka J. Math.12 (1960) 1-19. Zbl0097.30202MR123095
- [25] Gurney W.S.C., Nisbet R.N., The regulation of inhomogeneous populations, J. Theor. Biol.52 (1975) 441-457.
- [26] Gurtin M.E., MacCamy R.C., On the diffusion of biological populations, Math. Biosci.33 (1977) 35-49. Zbl0362.92007MR682594
- [27] Henry D., Geometric Theory of Parabolic Equations, Lecture Notes in Math., 840, Springer-Verlag, Berlin, 1981. Zbl0456.35001MR610244
- [28] J. Hernández, in preparation, 1999.
- [29] Hess P., Kato T., On some linear and nonlinear eigenvalue problems with an indefinite weight function, Comm. Partial Differential Equations5 (1980) 999-1030. Zbl0477.35075MR588690
- [30] Kamynin L.I., Khimchenko B.N., Development of Aleksandrov's theory of the isotropic strict extremum principle, Differential Equations (English translation)16 (1980) 181-189. Zbl0448.35020
- [31] Krahn E., Über eine von Rayleigh formulierte minimaleigenschaft des kreises, Math. Ann.91 (1925) 97-100. Zbl51.0356.05MR1512244JFM51.0356.05
- [32] Ladyženskaja O.A., Solonnikov V.A., Ural'ceva N.N., Linear and Quasilinear Equations of Parabolic Type, American Mathematical Society, Providence, 1968. Zbl0174.15403MR241822
- [33] Laetsch T., Uniqueness of sublinear boundary value problems, J. Differential Equations13 (1973) 13-23. Zbl0247.35052MR369899
- [34] López-Gómez J., The maximum principle and the existence of principal eigenvalues for some linear weighted boundary value problems, J. Differential Equations127 (1996) 263-294. Zbl0853.35078MR1387266
- [35] Manes A., Micheletti A.M., Un estensione della teoria variazonale classica degli autovalori per operatori ellittici del secondo ordine, Boll. Un. Mat. Ital.7 (1973) 285-301. Zbl0275.49042MR344663
- [36] Namba T., Density-dependent dispersal and spatial distribution of a population, J. Theor. Biol.86 (1980) 351-363. MR585955
- [37] Pao C.V., Nonlinear Parabolic and Elliptic Equations, Plenum Press, New York, 1992. Zbl0777.35001MR1212084
- [38] Protter M.H., Weinberger H.F., Maximum Principles in Differential Equations, Springer-Verlag, Berlin, 1984. Zbl0549.35002MR762825
- [39] Pucci C., Propietà di massimo e minimo delle soluzioni di equazioni a derivate parziali del secondo ordine di tipo ellittico e parabolico, Atti. Acad. Naz. Lincei Rend. Cl. Sci. Fis. Mat.23 (1957) 370-375. Zbl0088.30501
- [40] Rabinowitz P.H., Théorie du degré topologique et applications à des problèmes aux limites non linéaires, Lecture Notes, Lab. Analyse Numérique, Univ. Paris VI, Paris, 1975.
- [41] Sattinger D.H., Monotone methods in nonlinear elliptic and parabolic boundary value problems, Indiana Univ. Math. J.21 (1972) 979-1000. Zbl0223.35038MR299921
- [42] Schatzman M., Stationary solutions and asymptotic behavior of a quasilinear degenerate parabolic equation, Indiana Univ. Math. J.33 (1984) 1-29. Zbl0554.35064MR726104
- [43] Smoller J., Shock Waves and Reaction-Diffusion Equations, Springer-Verlag, Berlin, 1983. Zbl0508.35002MR688146
- [44] Spruck J., Uniqueness of a diffusion model of population biology, Comm. Partial Differential Equations8 (1983) 1605-1620. Zbl0534.35055MR729195
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.