Pronormal and subnormal subgroups and permutability

James Beidleman; Hermann Heineken

Bollettino dell'Unione Matematica Italiana (2003)

  • Volume: 6-B, Issue: 3, page 605-615
  • ISSN: 0392-4041

Abstract

top
We describe the finite groups satisfying one of the following conditions: all maximal subgroups permute with all subnormal subgroups, (2) all maximal subgroups and all Sylow p -subgroups for p < 7 permute with all subnormal subgroups.

How to cite

top

Beidleman, James, and Heineken, Hermann. "Pronormal and subnormal subgroups and permutability." Bollettino dell'Unione Matematica Italiana 6-B.3 (2003): 605-615. <http://eudml.org/doc/195659>.

@article{Beidleman2003,
abstract = {We describe the finite groups satisfying one of the following conditions: all maximal subgroups permute with all subnormal subgroups, (2) all maximal subgroups and all Sylow $p$-subgroups for $p< 7$ permute with all subnormal subgroups.},
author = {Beidleman, James, Heineken, Hermann},
journal = {Bollettino dell'Unione Matematica Italiana},
keywords = {finite groups; subnormal subgroups; maximal subgroups; Frattini quotient groups; polycyclic groups; pronormal subgroups},
language = {eng},
month = {10},
number = {3},
pages = {605-615},
publisher = {Unione Matematica Italiana},
title = {Pronormal and subnormal subgroups and permutability},
url = {http://eudml.org/doc/195659},
volume = {6-B},
year = {2003},
}

TY - JOUR
AU - Beidleman, James
AU - Heineken, Hermann
TI - Pronormal and subnormal subgroups and permutability
JO - Bollettino dell'Unione Matematica Italiana
DA - 2003/10//
PB - Unione Matematica Italiana
VL - 6-B
IS - 3
SP - 605
EP - 615
AB - We describe the finite groups satisfying one of the following conditions: all maximal subgroups permute with all subnormal subgroups, (2) all maximal subgroups and all Sylow $p$-subgroups for $p< 7$ permute with all subnormal subgroups.
LA - eng
KW - finite groups; subnormal subgroups; maximal subgroups; Frattini quotient groups; polycyclic groups; pronormal subgroups
UR - http://eudml.org/doc/195659
ER -

References

top
  1. AGRAWAL, R. K., Finite groups whose subnormal subgroups permute with all Sylow subgroups, Proc. Amer. Math. Soc., 47 (1975), 77-83. Zbl0299.20014MR364444
  2. ALEJANDRE, M.- BALLESTER-BOLINCHES, A.- PEDRAZA-AGUILERA, M. C., Finite Soluble Groups with Permutable Subnormal Subgroups, J. Algebra, 240 (2001), 705-722. Zbl0983.20014MR1841353
  3. BAER, R.Überauflösbare Gruppen, Abh. Math. Sem. Univ. Hamburg, 23(1959), 11-28. Zbl0092.02004MR103925
  4. BEIDLEMAN, J. C.- BREWSTER, B.- ROBINSON, D. J. S., Criteria for permutability to be transitive in finite groups, J. Algebra, 222 (1999), 400-412. Zbl0948.20015MR1733679
  5. BEIDLEMAN, J. C.- HEINEKEN, H., Finite Soluble Groups Whose Subnormal Subgroups Permute With Certain Classes of Subgroups, J. Group Theory (to appear). Zbl1045.20012
  6. CONWAY, J. H.- CURTISS, R. T.- NORTON, S. P.- PARKER, R. A.- WILSON, R. A., Atlas of finite groups, Clarendon Press, Oxford, 1985. Zbl0568.20001MR827219
  7. BRYCE, R. A.- COSSEY, J., The Wielandt subgroup of a finite soluble group, J. London Math. Soc., 40 (1989), 244-256. Zbl0734.20010MR1044272
  8. GASCHÜTZ, W., Gruppen, in denen das Normalteilersein transitivist, J. reine angew Math., 198 (1957), 87-92. Zbl0077.25003MR91277
  9. GORENSTEIN, D., Finite Simple Groups, Plenum Press, New York and London, 1982. Zbl0483.20008MR698782
  10. HUPPERT, B., Normalteiler und maximale Untergruppen endlicher Gruppen, Math. Z., 60 (1954), 409-434. Zbl0057.25303MR64771
  11. KEGEL, O. H., Sylow-Gruppen und Subnormalteiler endlicher Gruppen, Math. Z., 78 (1962), 205-221. Zbl0102.26802MR147527
  12. MAIER, R., Zur Vertauschbarkeit und Subnormalität von Untergruppen, Arch. Math., 53 (1989), 110-120. Zbl0673.20012MR1004266
  13. PENG, T. A., Finite groups with pronormal subgroups, Proc. Amer. Math. Soc., 20 (1969), 232-234. Zbl0167.02302MR232850
  14. ROBINSON, D. J. S., A note on finite groups in which normality is transitive, Proc. Amer. Math. Soc., 19 (1968), 933-937. Zbl0159.31002MR230808
  15. ROBINSON, D. J. S., A survey of groups in which normality or permutability is transitive, (Indian National Science Academy, New Delhi1999), 171-181. Zbl0952.20017MR1690796
  16. ROBINSON, D. J. S., The Structure of Finite Groups in which Permutability is a Transitive Relation, J. Austral. Math. Soc., 70 (2001), 143-159. Zbl0997.20027MR1815277
  17. ZACHER, G., I gruppi risolubili finiti in cui i sottogruppi di composizione coincidano con i sottogruppi quasi-normali, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8), 37 (1964), 150-154. Zbl0136.28302MR174633

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.