Subnormal, permutable, and embedded subgroups in finite groups

James Beidleman; Mathew Ragland

Open Mathematics (2011)

  • Volume: 9, Issue: 4, page 915-921
  • ISSN: 2391-5455

Abstract

top
The purpose of this paper is to study the subgroup embedding properties of S-semipermutability, semipermutability, and seminormality. Here we say H is S-semipermutable (resp. semipermutable) in a group Gif H permutes which each Sylow subgroup (resp. subgroup) of G whose order is relatively prime to that of H. We say H is seminormal in a group G if H is normalized by subgroups of G whose order is relatively prime to that of H. In particular, we establish that a seminormal p-subgroup is subnormal. We also establish that the solvable groups in which S-permutability is a transitive relation are precisely the groups in which the subnormal subgroups are all S-semipermutable. Local characterizations of this result are also established.

How to cite

top

James Beidleman, and Mathew Ragland. "Subnormal, permutable, and embedded subgroups in finite groups." Open Mathematics 9.4 (2011): 915-921. <http://eudml.org/doc/269184>.

@article{JamesBeidleman2011,
abstract = {The purpose of this paper is to study the subgroup embedding properties of S-semipermutability, semipermutability, and seminormality. Here we say H is S-semipermutable (resp. semipermutable) in a group Gif H permutes which each Sylow subgroup (resp. subgroup) of G whose order is relatively prime to that of H. We say H is seminormal in a group G if H is normalized by subgroups of G whose order is relatively prime to that of H. In particular, we establish that a seminormal p-subgroup is subnormal. We also establish that the solvable groups in which S-permutability is a transitive relation are precisely the groups in which the subnormal subgroups are all S-semipermutable. Local characterizations of this result are also established.},
author = {James Beidleman, Mathew Ragland},
journal = {Open Mathematics},
keywords = {Solvable group; PST-group; Subnormal subgroup; S-semipermutable; Seminormal subgroup; finite solvable groups; permutable subgroups; subnormal subgroups; semipermutable subgroups; seminormal subgroups; PST-groups; Sylow subgroups},
language = {eng},
number = {4},
pages = {915-921},
title = {Subnormal, permutable, and embedded subgroups in finite groups},
url = {http://eudml.org/doc/269184},
volume = {9},
year = {2011},
}

TY - JOUR
AU - James Beidleman
AU - Mathew Ragland
TI - Subnormal, permutable, and embedded subgroups in finite groups
JO - Open Mathematics
PY - 2011
VL - 9
IS - 4
SP - 915
EP - 921
AB - The purpose of this paper is to study the subgroup embedding properties of S-semipermutability, semipermutability, and seminormality. Here we say H is S-semipermutable (resp. semipermutable) in a group Gif H permutes which each Sylow subgroup (resp. subgroup) of G whose order is relatively prime to that of H. We say H is seminormal in a group G if H is normalized by subgroups of G whose order is relatively prime to that of H. In particular, we establish that a seminormal p-subgroup is subnormal. We also establish that the solvable groups in which S-permutability is a transitive relation are precisely the groups in which the subnormal subgroups are all S-semipermutable. Local characterizations of this result are also established.
LA - eng
KW - Solvable group; PST-group; Subnormal subgroup; S-semipermutable; Seminormal subgroup; finite solvable groups; permutable subgroups; subnormal subgroups; semipermutable subgroups; seminormal subgroups; PST-groups; Sylow subgroups
UR - http://eudml.org/doc/269184
ER -

References

top
  1. [1] Agrawal R.K., Finite groups whose subnormal subgroups permute with all Sylow subgroups, Proc. Amer. Math. Soc., 1975, 47(1), 77–83 http://dx.doi.org/10.1090/S0002-9939-1975-0364444-4 Zbl0299.20014
  2. [2] Al-Sharo K.A., Beidleman J.C., Heineken H., Ragland M.F., Some characterizations of finite groups in which semiper-mutability is a transitive relation, Forum Math., 2010, 22(5), 855–862 http://dx.doi.org/10.1515/FORUM.2010.045 Zbl1205.20025
  3. [3] Ballester-Bolinches A., Cossey J., Soler-Escrivà X., On a permutability property of subgroups of finite soluble groups, Commun. Contemp. Math., 2010, 12(2), 207–221 http://dx.doi.org/10.1142/S0219199710003798 Zbl1197.20017
  4. [4] Ballester-Bolinches A., Esteban-Romero R., Sylow permutable subnormal subgroups of finite groups II, Bull. Austr. Math. Soc, 2001, 64(3), 479–486 http://dx.doi.org/10.1017/S0004972700019948 Zbl0999.20012
  5. [5] Ballester-Bolinches A., Esteban-Romero R., Sylow permutable subnormal subgroups of finite groups, J. Algebra, 2002, 251(2), 727–738 http://dx.doi.org/10.1006/jabr.2001.9138 Zbl0999.20012
  6. [6] Beidleman J.C., Heineken H., Finite soluble groups whose subnormal subgroups permute with certain classes of subgroups, J. Group Theory, 2003, 6(2), 139–158 http://dx.doi.org/10.1515/jgth.2003.010 Zbl1045.20012
  7. [7] Beidleman J.C, Heineken H., Pronormal and subnormal subgroups and permutability, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat., 2003, 6(3), 605–615 Zbl1147.20301
  8. [8] Beidleman J.C, Heineken H., Ragland M.F., Solvable PST-groups, strong Sylow bases and mutually permutable products, J. Algebra, 2009, 321(7), 2022–2027 http://dx.doi.org/10.1016/j.jalgebra.2009.01.007 Zbl1190.20015
  9. [9] Beidleman J.C, Ragland M.F., The intersection map of subgroups and certain classes of finite groups, Ric. Mat., 2007, 56(2), 217–227 http://dx.doi.org/10.1007/s11587-007-0015-4 Zbl1167.20014
  10. [10] Kegel O.H., Sylow-Gruppen und Subnormalteiler endlicher Gruppen, Math. Z., 1962, 78, 205–221 http://dx.doi.org/10.1007/BF01195169 Zbl0102.26802
  11. [11] Maier R., Zur Vertauschbarkeit und Subnormalität von Untergruppen, Arch. Math. (Basel), 1989, 53(2), 110–120 
  12. [12] Ore O., Contributions to the theory of groups of finite order, Duke Math. J., 1939, 5(2), 431–460 http://dx.doi.org/10.1215/S0012-7094-39-00537-5 Zbl65.0065.06
  13. [13] Robinson D.J.S., A note on finite groups in which normality is transitive, Proc. Amer. Math. Soc., 1968, 19(4), 933–937 http://dx.doi.org/10.1090/S0002-9939-1968-0230808-9 Zbl0159.31002
  14. [14] Schmid P., Subgroups permutable with all Sylow subgroups, J. Algebra, 1998, 207(1), 285–293 http://dx.doi.org/10.1006/jabr.1998.7429 
  15. [15] Wang L, Li Y., Wang Y, Finite groups in which (S-)semipermutability is a transitive relation, Int. J. Algebra, 2008, 2(3) 143–152 Zbl1181.20024
  16. [16] Zacher G., I gruppi risolubili finiti in cui i sottogruppi di composizione coincidono con i sottogruppi quasi-normali, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur., 1964, 37, 150–154 Zbl0136.28302
  17. [17] Zhang Q., s-semipermutability and abnormality in finite groups, Comm. Algebra, 1999, 27(9), 4515–4524 http://dx.doi.org/10.1080/00927879908826711 Zbl0967.20012
  18. [18] Zhang Q.H., Wang L.F, The influence of s-semipermutable subgroups on finite groups, Acta Math. Sinica (Chin. Ser.), 2005, 48(1), 81–88 (in Chinese) Zbl1119.20026

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.