Determining two coefficients in elliptic operators via boundary spectral data: a uniqueness result

Bruno Canuto; Otared Kavian

Bollettino dell'Unione Matematica Italiana (2004)

  • Volume: 7-B, Issue: 1, page 207-230
  • ISSN: 0392-4041

Abstract

top
For a bounded and sufficiently smooth domain Ω in R N , N 2 , let λ k k = 1 and φ k k = 1 be respectively the eigenvalues and the corresponding eigenfunctions of the problem (with Neumann boundary conditions) - div a x φ k + q x φ k = λ k ϱ x φ k  in  Ω , a n φ k = 0  su  Ω . We prove that knowledge of the Dirichlet boundary spectral data λ k k = 1 , φ k | Ω k = 1 determines uniquely the Neumann-to-Dirichlet (or the Steklov- Poincaré) map γ for a related elliptic problem. Under suitable hypothesis on the coefficients a , q , ϱ their identifiability is then proved. We prove also analogous results for Dirichlet boundary conditions.

How to cite

top

Canuto, Bruno, and Kavian, Otared. "Determining two coefficients in elliptic operators via boundary spectral data: a uniqueness result." Bollettino dell'Unione Matematica Italiana 7-B.1 (2004): 207-230. <http://eudml.org/doc/195678>.

@article{Canuto2004,
abstract = {For a bounded and sufficiently smooth domain $\Omega$ in $\mathbb\{R\}^\{N\}$, $N\geq 2$, let $(\lambda_\{k\})_\{k=1\}^\{\infty\}$ and $(\varphi_\{k\})_\{k=1\}^\{\infty\}$ be respectively the eigenvalues and the corresponding eigenfunctions of the problem (with Neumann boundary conditions) $$ - \text\{div\} (a(x) \nabla \varphi\_\{k\})+ q(x) \varphi\_\{k\}= \lambda\_\{k\}\varrho (x) \varphi\_\{k\} \text\{ in \} \Omega, \quad a\frac\{\partial\}\{\partial \mathbf\{n\}\} \varphi\_\{k\}=0 \text\{ su \} \partial\Omega. $$ We prove that knowledge of the Dirichlet boundary spectral data $(\lambda_\{k\})_\{k=1\}^\{\infty\}$, $(\varphi_\{k|\partial\Omega\})_\{k=1\}^\{\infty\}$ determines uniquely the Neumann-to-Dirichlet (or the Steklov- Poincaré) map $\gamma$ for a related elliptic problem. Under suitable hypothesis on the coefficients $a, q, \varrho$ their identifiability is then proved. We prove also analogous results for Dirichlet boundary conditions.},
author = {Canuto, Bruno, Kavian, Otared},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {2},
number = {1},
pages = {207-230},
publisher = {Unione Matematica Italiana},
title = {Determining two coefficients in elliptic operators via boundary spectral data: a uniqueness result},
url = {http://eudml.org/doc/195678},
volume = {7-B},
year = {2004},
}

TY - JOUR
AU - Canuto, Bruno
AU - Kavian, Otared
TI - Determining two coefficients in elliptic operators via boundary spectral data: a uniqueness result
JO - Bollettino dell'Unione Matematica Italiana
DA - 2004/2//
PB - Unione Matematica Italiana
VL - 7-B
IS - 1
SP - 207
EP - 230
AB - For a bounded and sufficiently smooth domain $\Omega$ in $\mathbb{R}^{N}$, $N\geq 2$, let $(\lambda_{k})_{k=1}^{\infty}$ and $(\varphi_{k})_{k=1}^{\infty}$ be respectively the eigenvalues and the corresponding eigenfunctions of the problem (with Neumann boundary conditions) $$ - \text{div} (a(x) \nabla \varphi_{k})+ q(x) \varphi_{k}= \lambda_{k}\varrho (x) \varphi_{k} \text{ in } \Omega, \quad a\frac{\partial}{\partial \mathbf{n}} \varphi_{k}=0 \text{ su } \partial\Omega. $$ We prove that knowledge of the Dirichlet boundary spectral data $(\lambda_{k})_{k=1}^{\infty}$, $(\varphi_{k|\partial\Omega})_{k=1}^{\infty}$ determines uniquely the Neumann-to-Dirichlet (or the Steklov- Poincaré) map $\gamma$ for a related elliptic problem. Under suitable hypothesis on the coefficients $a, q, \varrho$ their identifiability is then proved. We prove also analogous results for Dirichlet boundary conditions.
LA - eng
UR - http://eudml.org/doc/195678
ER -

References

top
  1. BORG, G., Eine umkehrung der Sturm-Liouville eigenwertaufgabe, Acta Math., 78 (1946), 1-96. Zbl0063.00523MR15185
  2. BROWN, R. M., Global uniqueness in the impedance imaging problem for less regular conductivities, SIAM J. Math. Anal., 27 (1996), 1049-1056. Zbl0867.35111MR1393424
  3. BROWN, R. M.- UHLMANN, G., Uniqueness in the inverse conductivity problem for nonsmooth conductivities in two dimensions, Comm. in Part. Diff. Equat., 22 (1997), 1009-1027. Zbl0884.35167MR1452176
  4. CALDERÓN, A. P., On an inverse boundary value problem, Seminar on Numerical Analysis and its Applications to Continuum Physics, Soc. Brasileira de Matemática, Rio de Janeiro, 1980, 65-73. MR590275
  5. CANUTO, B.- KAVIAN, O.: Determining coefficients in a class of heat equations via boundary measurements, SIAM J. Math. Anal., 32 (2001), 963-986. Zbl0981.35096MR1828313
  6. GAROFALO, N.- LIN, F. H., Unique Continuation for Elliptic Operators: A Geometric- Variational Approach, Comm. on Pure and Appl. Math., 40 (1987), 347-366. Zbl0674.35007MR882069
  7. GEL'FAND, I. M.- LEVITAN, B. M., On determination of a differential equation from its spectral function, Izv. Akad. Nauk. SSSR Ser. Mat., 15 (1951), 309-360; Amer. Math. Soc. Transl. (Ser. 2), 1 (1955), 253-304. Zbl0066.33603
  8. ISAKOV, V., Inverse problems for partial differential equations, Applied Math. Sciences, vol. 127, Springer, New York, 1998. Zbl0908.35134MR1482521
  9. LEVINSON, N., The inverse Sturm-Liouville problem, Mat. Tidsskr., B (1949), 25-30. Zbl0045.36402MR32067
  10. LIONS, J.-L., Problèmes aux limites dans les équations aux dérivées partielles; Presses de l'Université de Montréal, Montréal1965. Zbl0143.14003
  11. NACHMAN, A. I., Reconstructions from boundary measurements; Ann. Math., 128 (1988), 531-577. Zbl0675.35084
  12. NACHMAN, A. I.- SYLVESTER, J.- UHLMANN, G., An n -dimensional Borg-Levinson theorem; Comm. Math. Physics, 115 (1988), 595-605. Zbl0644.35095

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.