Determining two coefficients in elliptic operators via boundary spectral data: a uniqueness result
Bollettino dell'Unione Matematica Italiana (2004)
- Volume: 7-B, Issue: 1, page 207-230
- ISSN: 0392-4041
Access Full Article
topAbstract
topHow to cite
topCanuto, Bruno, and Kavian, Otared. "Determining two coefficients in elliptic operators via boundary spectral data: a uniqueness result." Bollettino dell'Unione Matematica Italiana 7-B.1 (2004): 207-230. <http://eudml.org/doc/195678>.
@article{Canuto2004,
abstract = {For a bounded and sufficiently smooth domain $\Omega$ in $\mathbb\{R\}^\{N\}$, $N\geq 2$, let $(\lambda_\{k\})_\{k=1\}^\{\infty\}$ and $(\varphi_\{k\})_\{k=1\}^\{\infty\}$ be respectively the eigenvalues and the corresponding eigenfunctions of the problem (with Neumann boundary conditions) $$ - \text\{div\} (a(x) \nabla \varphi\_\{k\})+ q(x) \varphi\_\{k\}= \lambda\_\{k\}\varrho (x) \varphi\_\{k\} \text\{ in \} \Omega, \quad a\frac\{\partial\}\{\partial \mathbf\{n\}\} \varphi\_\{k\}=0 \text\{ su \} \partial\Omega. $$ We prove that knowledge of the Dirichlet boundary spectral data $(\lambda_\{k\})_\{k=1\}^\{\infty\}$, $(\varphi_\{k|\partial\Omega\})_\{k=1\}^\{\infty\}$ determines uniquely the Neumann-to-Dirichlet (or the Steklov- Poincaré) map $\gamma$ for a related elliptic problem. Under suitable hypothesis on the coefficients $a, q, \varrho$ their identifiability is then proved. We prove also analogous results for Dirichlet boundary conditions.},
author = {Canuto, Bruno, Kavian, Otared},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {2},
number = {1},
pages = {207-230},
publisher = {Unione Matematica Italiana},
title = {Determining two coefficients in elliptic operators via boundary spectral data: a uniqueness result},
url = {http://eudml.org/doc/195678},
volume = {7-B},
year = {2004},
}
TY - JOUR
AU - Canuto, Bruno
AU - Kavian, Otared
TI - Determining two coefficients in elliptic operators via boundary spectral data: a uniqueness result
JO - Bollettino dell'Unione Matematica Italiana
DA - 2004/2//
PB - Unione Matematica Italiana
VL - 7-B
IS - 1
SP - 207
EP - 230
AB - For a bounded and sufficiently smooth domain $\Omega$ in $\mathbb{R}^{N}$, $N\geq 2$, let $(\lambda_{k})_{k=1}^{\infty}$ and $(\varphi_{k})_{k=1}^{\infty}$ be respectively the eigenvalues and the corresponding eigenfunctions of the problem (with Neumann boundary conditions) $$ - \text{div} (a(x) \nabla \varphi_{k})+ q(x) \varphi_{k}= \lambda_{k}\varrho (x) \varphi_{k} \text{ in } \Omega, \quad a\frac{\partial}{\partial \mathbf{n}} \varphi_{k}=0 \text{ su } \partial\Omega. $$ We prove that knowledge of the Dirichlet boundary spectral data $(\lambda_{k})_{k=1}^{\infty}$, $(\varphi_{k|\partial\Omega})_{k=1}^{\infty}$ determines uniquely the Neumann-to-Dirichlet (or the Steklov- Poincaré) map $\gamma$ for a related elliptic problem. Under suitable hypothesis on the coefficients $a, q, \varrho$ their identifiability is then proved. We prove also analogous results for Dirichlet boundary conditions.
LA - eng
UR - http://eudml.org/doc/195678
ER -
References
top- BORG, G., Eine umkehrung der Sturm-Liouville eigenwertaufgabe, Acta Math., 78 (1946), 1-96. Zbl0063.00523MR15185
- BROWN, R. M., Global uniqueness in the impedance imaging problem for less regular conductivities, SIAM J. Math. Anal., 27 (1996), 1049-1056. Zbl0867.35111MR1393424
- BROWN, R. M.- UHLMANN, G., Uniqueness in the inverse conductivity problem for nonsmooth conductivities in two dimensions, Comm. in Part. Diff. Equat., 22 (1997), 1009-1027. Zbl0884.35167MR1452176
- CALDERÓN, A. P., On an inverse boundary value problem, Seminar on Numerical Analysis and its Applications to Continuum Physics, Soc. Brasileira de Matemática, Rio de Janeiro, 1980, 65-73. MR590275
- CANUTO, B.- KAVIAN, O.: Determining coefficients in a class of heat equations via boundary measurements, SIAM J. Math. Anal., 32 (2001), 963-986. Zbl0981.35096MR1828313
- GAROFALO, N.- LIN, F. H., Unique Continuation for Elliptic Operators: A Geometric- Variational Approach, Comm. on Pure and Appl. Math., 40 (1987), 347-366. Zbl0674.35007MR882069
- GEL'FAND, I. M.- LEVITAN, B. M., On determination of a differential equation from its spectral function, Izv. Akad. Nauk. SSSR Ser. Mat., 15 (1951), 309-360; Amer. Math. Soc. Transl. (Ser. 2), 1 (1955), 253-304. Zbl0066.33603
- ISAKOV, V., Inverse problems for partial differential equations, Applied Math. Sciences, vol. 127, Springer, New York, 1998. Zbl0908.35134MR1482521
- LEVINSON, N., The inverse Sturm-Liouville problem, Mat. Tidsskr., B (1949), 25-30. Zbl0045.36402MR32067
- LIONS, J.-L., Problèmes aux limites dans les équations aux dérivées partielles; Presses de l'Université de Montréal, Montréal1965. Zbl0143.14003
- NACHMAN, A. I., Reconstructions from boundary measurements; Ann. Math., 128 (1988), 531-577. Zbl0675.35084
- NACHMAN, A. I.- SYLVESTER, J.- UHLMANN, G., An -dimensional Borg-Levinson theorem; Comm. Math. Physics, 115 (1988), 595-605. Zbl0644.35095
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.