Determining two coefficients in elliptic operators via boundary spectral data: a uniqueness result
Bollettino dell'Unione Matematica Italiana (2004)
- Volume: 7-B, Issue: 1, page 207-230
- ISSN: 0392-4041
Access Full Article
topAbstract
topHow to cite
topReferences
top- BORG, G., Eine umkehrung der Sturm-Liouville eigenwertaufgabe, Acta Math., 78 (1946), 1-96. Zbl0063.00523MR15185
- BROWN, R. M., Global uniqueness in the impedance imaging problem for less regular conductivities, SIAM J. Math. Anal., 27 (1996), 1049-1056. Zbl0867.35111MR1393424
- BROWN, R. M.- UHLMANN, G., Uniqueness in the inverse conductivity problem for nonsmooth conductivities in two dimensions, Comm. in Part. Diff. Equat., 22 (1997), 1009-1027. Zbl0884.35167MR1452176
- CALDERÓN, A. P., On an inverse boundary value problem, Seminar on Numerical Analysis and its Applications to Continuum Physics, Soc. Brasileira de Matemática, Rio de Janeiro, 1980, 65-73. MR590275
- CANUTO, B.- KAVIAN, O.: Determining coefficients in a class of heat equations via boundary measurements, SIAM J. Math. Anal., 32 (2001), 963-986. Zbl0981.35096MR1828313
- GAROFALO, N.- LIN, F. H., Unique Continuation for Elliptic Operators: A Geometric- Variational Approach, Comm. on Pure and Appl. Math., 40 (1987), 347-366. Zbl0674.35007MR882069
- GEL'FAND, I. M.- LEVITAN, B. M., On determination of a differential equation from its spectral function, Izv. Akad. Nauk. SSSR Ser. Mat., 15 (1951), 309-360; Amer. Math. Soc. Transl. (Ser. 2), 1 (1955), 253-304. Zbl0066.33603
- ISAKOV, V., Inverse problems for partial differential equations, Applied Math. Sciences, vol. 127, Springer, New York, 1998. Zbl0908.35134MR1482521
- LEVINSON, N., The inverse Sturm-Liouville problem, Mat. Tidsskr., B (1949), 25-30. Zbl0045.36402MR32067
- LIONS, J.-L., Problèmes aux limites dans les équations aux dérivées partielles; Presses de l'Université de Montréal, Montréal1965. Zbl0143.14003
- NACHMAN, A. I., Reconstructions from boundary measurements; Ann. Math., 128 (1988), 531-577. Zbl0675.35084
- NACHMAN, A. I.- SYLVESTER, J.- UHLMANN, G., An -dimensional Borg-Levinson theorem; Comm. Math. Physics, 115 (1988), 595-605. Zbl0644.35095