Abelian surfaces and products of elliptic curves
Bollettino dell'Unione Matematica Italiana (1998)
- Volume: 1-B, Issue: 2, page 407-427
- ISSN: 0392-4041
Access Full Article
topAbstract
topHow to cite
topReferences
top- BAUMSLAG, B.- CHANDLER, B., Teoria dei gruppi, Collana Schaum (1983).
- BOLZA, O., On binary sextics with linear transformations onto themselves, Am. J. Math., 10 (1888), 47-70. MR1505464
- GRIFFITHS, H.- HARRIS, J., Principles of Algebraic Geometry, John Wiley & Sons (1978). Zbl0408.14001
- HARRIS, J., Algebraic Geometry, a first course, Springer-Verlag (1992). Zbl0779.14001MR1182558
- KEMPF, G. R., Complex Abelian Varieties and Theta Functions, Springer-Verlag (1991). Zbl0752.14040MR1109495
- LANGE, H.- C., Complex Abelian Varieties, Springer-Verlag (1992). Zbl0779.14012MR1217487
- MUNKRES, J., Elements of Algebraic Topology, The Benjiamin Cumming Publishing Company (1984). Zbl0673.55001MR755006
- RUPPERT, W., When is an abelian surface isomorphic or isogeneous to a product of elliptic curves?, Math. Zeit., 203 (1990), 293-299. Zbl0712.14028MR1033438
- SCHOEN, C., Produkte Abelscher Varietäten und Moduln über Ordnungen, J. Reine Angew. Math., 429 (1992), 115-123. Zbl0744.14030MR1173119
- SHIODA, T.- MITANI, N., Singular abelian surfaces and binary quadratic forms, in Classification of Algebraic Varieties and Compact Complex Manifolds, Lecture Notes in Math., vol. 412, 255-287, Springer-Verlag (1974). Zbl0302.14011MR382289