A basis for the non-archimedean holomorphic theta functions.
Si dà una nuova e completa dimostrazione del risultato cruciale del metodo di Ruppert che consente di stabilire in maniera effettiva quando una superficie abeliana è isomorfa o isogena a un prodotto di curve ellittiche.
The aim of this paper is to extend our previous results about Galois action on the torsion points of abelian varieties to the case of (finitely generated) fields of characteristic 2.
When a complex Abelian surface can be decomposed into a product of two elliptic curves, how many decompositions does the Abelian surface admit? We provide arithmetic formulae for the number of such decompositions.
Étant donnés un entier et un groupe de Barsotti-Tate tronqué d’échelon et de dimension sur un anneau de valuation d’inégales caractéristiques, nous donnons une borne explicite sur son invariant de Hasse qui implique que sa filtration de Harder-Narasimhan possède un sous-groupe libre de rang . Lorsque nous redémontrons également le théorème d’Abbes-Mokrane ([120]) et de Tian ([164]) par des méthodes locales. On applique cela aux familles -adiques de tels objets et en particulier à certaines...
We study applications of divisibility properties of recurrence sequences to Tate’s theory of abelian varieties over finite fields.
To any finite covering of degree between smooth complex projective manifolds, one associates a vector bundle of rank on whose total space contains . It is known that is ample when is a projective space ([Lazarsfeld 1980]), a Grassmannian ([Manivel 1997]), or a Lagrangian Grassmannian ([Kim Maniel 1999]). We show an analogous result when is a simple abelian variety and does not factor through any nontrivial isogeny . This result is obtained by showing that is -regular in the...
Stein and Watkins conjectured that for a certain family of elliptic curves E, the X₀(N)-optimal curve and the X₁(N)-optimal curve of the isogeny class 𝓒 containing E of conductor N differ by a 3-isogeny. In this paper, we show that this conjecture is true.