Entire elliptic Hankel convolution equations

M. Belhadj; J. J. Betancor

Bollettino dell'Unione Matematica Italiana (2003)

  • Volume: 6-B, Issue: 3, page 717-737
  • ISSN: 0392-4041

Abstract

top
In this paper we characterize the entire elliptic Hankel convolutors on tempered distributions in terms of the growth of their Hankel transforms.

How to cite

top

Belhadj, M., and Betancor, J. J.. "Entire elliptic Hankel convolution equations." Bollettino dell'Unione Matematica Italiana 6-B.3 (2003): 717-737. <http://eudml.org/doc/195883>.

@article{Belhadj2003,
abstract = {In this paper we characterize the entire elliptic Hankel convolutors on tempered distributions in terms of the growth of their Hankel transforms.},
author = {Belhadj, M., Betancor, J. J.},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {10},
number = {3},
pages = {717-737},
publisher = {Unione Matematica Italiana},
title = {Entire elliptic Hankel convolution equations},
url = {http://eudml.org/doc/195883},
volume = {6-B},
year = {2003},
}

TY - JOUR
AU - Belhadj, M.
AU - Betancor, J. J.
TI - Entire elliptic Hankel convolution equations
JO - Bollettino dell'Unione Matematica Italiana
DA - 2003/10//
PB - Unione Matematica Italiana
VL - 6-B
IS - 3
SP - 717
EP - 737
AB - In this paper we characterize the entire elliptic Hankel convolutors on tempered distributions in terms of the growth of their Hankel transforms.
LA - eng
UR - http://eudml.org/doc/195883
ER -

References

top
  1. ALTENBURG, G., Bessel-Transformationen in Räumen von Grundfunktionen über dem Intervall Ω = 0 , + und deren Dualraumen, Math. Nachr., 108 (1982), 197-218. Zbl0528.46035MR695127
  2. BELHADJ, M.- BETANCOR, J. J., Hankel convolution operators on entire functions and distributions, J. Math. Anal. Appl., 276 (2002), 40-63. Zbl1012.44003MR1944335
  3. BETANCOR, J. J.- MARRERO, I., Multipliers of Hankel transformable generalized functions, Comment. Math. Univ. Carolinae, 33 (3) (1992), 389-401. Zbl0801.46047MR1209282
  4. BETANCOR, J. J.- MARRERO, I., The Hankel convolution and the Zemanian spaces β μ and β μ , Math. Nachr., 160 (1993), 277-298. Zbl0796.46023MR1245003
  5. BETANCOR, J. J.- MARRERO, I., Structure and convergence in certain spaces of distributions and the generalized Hankel convolution, Math. Japonica, 38 (6) (1993), 1141-1155. Zbl0795.46023MR1250341
  6. BETANCOR, J. J.- MARRERO, I., Some properties of Hankel convolution operators, Canad. Math. Bull., 36 (4) (1993), 398-406. Zbl0795.46024MR1245312
  7. BETANCOR, J. J.- MARRERO, I., On the topology of the space of Hankel convolution operators, J. Math. Anal. Appl., 201 (1996), 994-1001. Zbl0905.46024MR1400576
  8. BETANCOR, J. J.- RODRÍGUEZ-MESA, L., Hankel convolution on distribution spaces with exponential growth, Studia Math., 121 (1) (1996), 35-52. Zbl0862.46021MR1414893
  9. BETANCOR, J. J.- RODRÍGUEZ-MESA, L., On Hankel convolution equations in distribution spaces, Rocky Mountain J. Math., 29 (1) (1999), 93-114. Zbl0926.46034MR1687657
  10. CHOLEWINSKI, F. M., A Hankel Convolution Complex Inversion Theory, Mem. Amer. Math. Soc., 58 (1965). Zbl0137.30901MR180813
  11. CHOLEWINSKI, F. M., Generalized Fock spaces and associated operators, SIAM J. Math. Anal., 15 (1) (1984), 177-202. Zbl0596.46017MR728694
  12. VON EIJNDHOVEN, S. J. L.- DE GRAAF, J., Some results on Hankel invariant distribution spaces, Proc. Kon. Ned. Akad. van Wetensch. A, 86 (1) (1983), 77-87. Zbl0516.46023MR695592
  13. VON EIJNDHOVEN, S. J. L.- KERKHOF, M. J., The Hankel transformation and spaces of W -type, Reports on Appl. and Numer. Analysis, 10, Dept. of Maths. and Comp. Sci., Eindhoven Univ. of Tech. (1988). 
  14. EHRENPREIS, L., Solution of some problem of division, Part IV. Invertible and elliptic operators, Amer. J. Maths., 82 (1960), 522-588. Zbl0098.08401MR119082
  15. ERDÉLYI, A., Tables of integral transforms, II, McGraw Hill, New York, 1953. 
  16. GODEFROY, G.- SHAPIRO, J.H., Operators with dense, invariant, cyclic vector manifolds, J. Functional Anal., 98 (1991), 229-269. Zbl0732.47016MR1111569
  17. HAIMO, D. T., Integral equations associated with Hankel convolutions, Trans. Amer. Math. Soc., 116 (1965), 330-375. Zbl0135.33502MR185379
  18. HERZ, C. S., On the mean inversion of Fourier and Hankel transforms, Proc. Nat. Acad. Sci. USA, 40 (1954), 996-999. Zbl0059.09901MR63477
  19. HIRSCHMAN, I. I. JR., Variation diminishing Hankel transforms, J. Analyse Math., 8 (1960/61), 307-336. Zbl0099.31301MR157197
  20. HORVATH, J., Topological Vector Spaces and Distributions, I, Addison-Wesley, Reading, Massachusetts (1966). Zbl0143.15101MR205028
  21. MARRERO, I.- BETANCOR, J. J., Hankel convolution of generalized functions, Rendiconti di Matematica, 15 (1995), 351-380. Zbl0833.46026MR1362778
  22. SCHWARTZ, L., Theorie des distributions, Hermann, Paris, 1978. Zbl0399.46028MR209834
  23. DE SOUSA-PINTO, J., A generalized Hankel convolution, SIAM J. Appl. Math., 16 (1985), 1335-1346. Zbl0592.46038MR807914
  24. TRIMÉCHE, K., Transformation intégrale de Weyl et théorème de Paley-Wiener associés à un opérateur différentiel singulier sur 0 , , J. Math. Pures Appl., 60 (9) (1981), 51-98. Zbl0416.44002MR616008
  25. WATSON, G. N., A treatise on the theory of Bessel functions, Cambridge University Press, Cambridge, 1959. Zbl0174.36202MR1349110JFM48.0412.02
  26. ZEMANIAN, A. H., A distributional Hankel transformation, SIAM J. Appl. Math., 14 (1966), 561-576. Zbl0154.13803MR201930
  27. ZEMANIAN, A. H., The Hankel transformations of certain distributions of rapid growth, J. SIAM Appl. Math., 14 (4) (1966), 678-690. Zbl0154.13804MR211211
  28. ZEMANIAN, A. H., Generalized integral transformations, Interscience Publishers, New York, 1968. Zbl0181.12701MR423007
  29. ZIELEZNY, Z., Hypoelliptic and entire elliptic convolution equations in subspaces of the spaces of distributions (I), Studia Math., 28 (1967), 317-332. Zbl0181.42201MR222476

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.