Multipliers of Hankel transformable generalized functions
Jorge J. Betancor; Isabel Marrero
Commentationes Mathematicae Universitatis Carolinae (1992)
- Volume: 33, Issue: 3, page 389-401
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topBetancor, Jorge J., and Marrero, Isabel. "Multipliers of Hankel transformable generalized functions." Commentationes Mathematicae Universitatis Carolinae 33.3 (1992): 389-401. <http://eudml.org/doc/247367>.
@article{Betancor1992,
abstract = {Let $\mathcal \{H\}_\{\mu \}$ be the Zemanian space of Hankel transformable functions, and let $\mathcal \{H\}^\{\prime \}_\{\mu \}$ be its dual space. In this paper $\mathcal \{H\}_\{\mu \}$ is shown to be nuclear, hence Schwartz, Montel and reflexive. The space $\text\{O\}$, also introduced by Zemanian, is completely characterized as the set of multipliers of $\mathcal \{H\}_\{\mu \}$ and of $\mathcal \{H\}^\{\prime \}_\{\mu \}$. Certain topologies are considered on $\mathcal \{O\}$, and continuity properties of the multiplication operation with respect to those topologies are discussed.},
author = {Betancor, Jorge J., Marrero, Isabel},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {multipliers; generalized functions; Hankel transformation; Zemanian space of Hankel transformable functions; nuclear; Schwartz; Montel; reflexive; multiplication operation},
language = {eng},
number = {3},
pages = {389-401},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Multipliers of Hankel transformable generalized functions},
url = {http://eudml.org/doc/247367},
volume = {33},
year = {1992},
}
TY - JOUR
AU - Betancor, Jorge J.
AU - Marrero, Isabel
TI - Multipliers of Hankel transformable generalized functions
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1992
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 33
IS - 3
SP - 389
EP - 401
AB - Let $\mathcal {H}_{\mu }$ be the Zemanian space of Hankel transformable functions, and let $\mathcal {H}^{\prime }_{\mu }$ be its dual space. In this paper $\mathcal {H}_{\mu }$ is shown to be nuclear, hence Schwartz, Montel and reflexive. The space $\text{O}$, also introduced by Zemanian, is completely characterized as the set of multipliers of $\mathcal {H}_{\mu }$ and of $\mathcal {H}^{\prime }_{\mu }$. Certain topologies are considered on $\mathcal {O}$, and continuity properties of the multiplication operation with respect to those topologies are discussed.
LA - eng
KW - multipliers; generalized functions; Hankel transformation; Zemanian space of Hankel transformable functions; nuclear; Schwartz; Montel; reflexive; multiplication operation
UR - http://eudml.org/doc/247367
ER -
References
top- Barros-Neto J., An Introduction to the Theory of Distributions, R.E. Krieger Publishing Company, Malabar, Florida, 1981. Zbl0512.46040
- Horvath J., Topological Vector Spaces and Distributions, Vol. 1, Addison-Wesley, Reading, Massachusetts, 1966. MR0205028
- Pietsch A., Nuclear Locally Convex Spaces, Springer-Verlag, Berlin, 1972. Zbl0308.47024MR0350360
- Treves F., Topological Vector Spaces, Distributions, and Kernels, Academic Press, New York, 1967. Zbl1111.46001MR0225131
- Wong Y.-Ch., Schwartz Spaces, Nuclear Spaces, and Tensor Products, Lecture Notes in Math. 726, Springer-Verlag, Berlin, 1979. Zbl0413.46001MR0541034
- Zemanian A.H., The Hankel transformation of certain distributions of rapid growth, SIAM J. Appl. Math. 14 (1966), 678-690. (1966) Zbl0154.13804MR0211211
- Zemanian A.H., Generalized Integral Transformations, Interscience, New York, 1968. Zbl0643.46029MR0423007
Citations in EuDML Documents
top- J. Betancor, B. González, A convolution operation for a distributional Hankel transformation
- M. Belhadj, J. J. Betancor, Entire elliptic Hankel convolution equations
- Jorge J. Betancor, Isabel Marrero, Convolution operators on Kucera-type spaces for the Hankel transformation
- Jorge Betancor, Lourdes Rodríguez-Mesa, Hankel convolution on distribution spaces with exponential growth
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.