The p -Laplacian in domains with small random holes

M. Balzano; T. Durante

Bollettino dell'Unione Matematica Italiana (2003)

  • Volume: 6-B, Issue: 2, page 435-458
  • ISSN: 0392-4041

Abstract

top
P h {ll -div (|Duh|p-2 Duh)=g, & in D Eh uhH1,p0(D Eh). . where 2 p n and E h are random subsets of a bounded open set D of R n n 2 . By means of a variational approach, we study the asymptotic behaviour of solutions of P h , characterizing the limit problem for suitable sequences of random sets.

How to cite

top

Balzano, M., and Durante, T.. "The $p$-Laplacian in domains with small random holes." Bollettino dell'Unione Matematica Italiana 6-B.2 (2003): 435-458. <http://eudml.org/doc/195896>.

@article{Balzano2003,
abstract = {$P_h$\{ll -div (|Duh|p-2 Duh)=g, & in D Eh uhH1,p0(D Eh). . where $2\leq p \leq n$ and $E_\{h\}$ are random subsets of a bounded open set $D$ of $\mathbb\{R\}^\{n\}$$(n\geq 2)$. By means of a variational approach, we study the asymptotic behaviour of solutions of $(P_h)$, characterizing the limit problem for suitable sequences of random sets.},
author = {Balzano, M., Durante, T.},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {6},
number = {2},
pages = {435-458},
publisher = {Unione Matematica Italiana},
title = {The $p$-Laplacian in domains with small random holes},
url = {http://eudml.org/doc/195896},
volume = {6-B},
year = {2003},
}

TY - JOUR
AU - Balzano, M.
AU - Durante, T.
TI - The $p$-Laplacian in domains with small random holes
JO - Bollettino dell'Unione Matematica Italiana
DA - 2003/6//
PB - Unione Matematica Italiana
VL - 6-B
IS - 2
SP - 435
EP - 458
AB - $P_h${ll -div (|Duh|p-2 Duh)=g, & in D Eh uhH1,p0(D Eh). . where $2\leq p \leq n$ and $E_{h}$ are random subsets of a bounded open set $D$ of $\mathbb{R}^{n}$$(n\geq 2)$. By means of a variational approach, we study the asymptotic behaviour of solutions of $(P_h)$, characterizing the limit problem for suitable sequences of random sets.
LA - eng
UR - http://eudml.org/doc/195896
ER -

References

top
  1. BALZANO, M., Random Relaxed Dirichlet Problems, Ann. Mat. Pura Appl. (IV), 153 (1988), 133-174. Zbl0673.60067MR1008342
  2. BALZANO, M.- CORBO ESPOSITO, A.- PADERNI, G., Nonlinear Dirichlet problems in randomly perforated domains, Rendiconti di Matematica e delle sue Appl., 17 (1997), 163-186. Zbl0886.49017MR1484930
  3. BALZANO, M.- NOTARANTONIO, L., On the asymptotic behaviour of Dirichlet problems in a Riemannian manifold less small random holes, Rend. Sem. Mat. Univ. Padova, 100 (1998). Zbl0922.31008MR1675287
  4. BAXTER, J. R.- JAIN, N. C., Asymptotic capacities for finely divided bodies and stopped diffusions, Illinois J. Math., 31 (1987), 469-495. Zbl0618.60072MR892182
  5. DAL MASO, G., Comportamento asintotico delle soluzioni di problemi di Dirichlet, Conference XV Congress U.M.I. (Padova, Italy) 1995 - Boll. Un. Mat. Ital. (7), 11-A (1997), 253-277. Zbl0884.31002MR1477778
  6. DAL MASO, G.- DEFRANCESCHI, A., Limits of nonlinear Dirichlet problems in varying domains, Manuscripta Math., 61 (1988), 251-278. Zbl0653.49017MR949817
  7. FIGARI, R.- ORLANDI, E.- TETA, A., The Laplacian in regions with many small obstacles: fluctuation aroun the limit operator, J. Statist. Phys., 41 (1985), 465-487. Zbl0642.60053MR814842
  8. HEINONEN, J.- KILPELÄINEN, T., A -superharmonic functions and supersolutions of degenerate ellipitic equations, Arkiv för Matematik, 26 (1988), 87-105. Zbl0652.31006MR948282
  9. HEINONEN, J.- KILPELÄINEN, T.- MARTIO, O., Nonlinear potential theory of degenerate ellipitic equations, Oxford Mathematical Monographs - Clarendon Press, 1993. Zbl0780.31001MR1207810
  10. KAC, M., Probabilistic methods in some problems of scattering theory, Rocky Mountain J. Math., 4 (1974), 511-538. Zbl0314.47006MR510113
  11. OZAWA, S., Random media and the eigenvalues of the Laplacian, Comm. Math. Phys., 94 (1984), 421-437. Zbl0555.35101MR763745
  12. PAPANICOLAOU, G. C.- VARADHAN, S. R. S., Diffusion in regions with many small holes, Stochastic Differential Systems, Filtering and Control. Proc. of the IFIPWG 7/1 Working Conference (Vilnius, Lithuania, 1978), 190-206. Lectures Notes in Control and Information Sci., 25, Springer-Verlag, Berlin (1980). Zbl0485.60076MR609184
  13. ZIEMER, W. P., Weakly Differentiable Functions, Springer-Verlag, 1989. Zbl0692.46022MR1014685

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.