The -Laplacian in domains with small random holes
Bollettino dell'Unione Matematica Italiana (2003)
- Volume: 6-B, Issue: 2, page 435-458
- ISSN: 0392-4041
Access Full Article
topAbstract
topHow to cite
topBalzano, M., and Durante, T.. "The $p$-Laplacian in domains with small random holes." Bollettino dell'Unione Matematica Italiana 6-B.2 (2003): 435-458. <http://eudml.org/doc/195896>.
@article{Balzano2003,
abstract = {$P_h$\{ll -div (|Duh|p-2 Duh)=g, & in D Eh
uhH1,p0(D Eh). . where
$2\leq p \leq n$ and $E_\{h\}$ are random subsets of a bounded open set $D$ of $\mathbb\{R\}^\{n\}$$(n\geq 2)$. By means of a variational approach, we study the asymptotic behaviour of solutions of $(P_h)$, characterizing the limit problem for suitable sequences of random sets.},
author = {Balzano, M., Durante, T.},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {6},
number = {2},
pages = {435-458},
publisher = {Unione Matematica Italiana},
title = {The $p$-Laplacian in domains with small random holes},
url = {http://eudml.org/doc/195896},
volume = {6-B},
year = {2003},
}
TY - JOUR
AU - Balzano, M.
AU - Durante, T.
TI - The $p$-Laplacian in domains with small random holes
JO - Bollettino dell'Unione Matematica Italiana
DA - 2003/6//
PB - Unione Matematica Italiana
VL - 6-B
IS - 2
SP - 435
EP - 458
AB - $P_h${ll -div (|Duh|p-2 Duh)=g, & in D Eh
uhH1,p0(D Eh). . where
$2\leq p \leq n$ and $E_{h}$ are random subsets of a bounded open set $D$ of $\mathbb{R}^{n}$$(n\geq 2)$. By means of a variational approach, we study the asymptotic behaviour of solutions of $(P_h)$, characterizing the limit problem for suitable sequences of random sets.
LA - eng
UR - http://eudml.org/doc/195896
ER -
References
top- BALZANO, M., Random Relaxed Dirichlet Problems, Ann. Mat. Pura Appl. (IV), 153 (1988), 133-174. Zbl0673.60067MR1008342
- BALZANO, M.- CORBO ESPOSITO, A.- PADERNI, G., Nonlinear Dirichlet problems in randomly perforated domains, Rendiconti di Matematica e delle sue Appl., 17 (1997), 163-186. Zbl0886.49017MR1484930
- BALZANO, M.- NOTARANTONIO, L., On the asymptotic behaviour of Dirichlet problems in a Riemannian manifold less small random holes, Rend. Sem. Mat. Univ. Padova, 100 (1998). Zbl0922.31008MR1675287
- BAXTER, J. R.- JAIN, N. C., Asymptotic capacities for finely divided bodies and stopped diffusions, Illinois J. Math., 31 (1987), 469-495. Zbl0618.60072MR892182
- DAL MASO, G., Comportamento asintotico delle soluzioni di problemi di Dirichlet, Conference XV Congress U.M.I. (Padova, Italy) 1995 - Boll. Un. Mat. Ital. (7), 11-A (1997), 253-277. Zbl0884.31002MR1477778
- DAL MASO, G.- DEFRANCESCHI, A., Limits of nonlinear Dirichlet problems in varying domains, Manuscripta Math., 61 (1988), 251-278. Zbl0653.49017MR949817
- FIGARI, R.- ORLANDI, E.- TETA, A., The Laplacian in regions with many small obstacles: fluctuation aroun the limit operator, J. Statist. Phys., 41 (1985), 465-487. Zbl0642.60053MR814842
- HEINONEN, J.- KILPELÄINEN, T., -superharmonic functions and supersolutions of degenerate ellipitic equations, Arkiv för Matematik, 26 (1988), 87-105. Zbl0652.31006MR948282
- HEINONEN, J.- KILPELÄINEN, T.- MARTIO, O., Nonlinear potential theory of degenerate ellipitic equations, Oxford Mathematical Monographs - Clarendon Press, 1993. Zbl0780.31001MR1207810
- KAC, M., Probabilistic methods in some problems of scattering theory, Rocky Mountain J. Math., 4 (1974), 511-538. Zbl0314.47006MR510113
- OZAWA, S., Random media and the eigenvalues of the Laplacian, Comm. Math. Phys., 94 (1984), 421-437. Zbl0555.35101MR763745
- PAPANICOLAOU, G. C.- VARADHAN, S. R. S., Diffusion in regions with many small holes, Stochastic Differential Systems, Filtering and Control. Proc. of the IFIPWG 7/1 Working Conference (Vilnius, Lithuania, 1978), 190-206. Lectures Notes in Control and Information Sci., 25, Springer-Verlag, Berlin (1980). Zbl0485.60076MR609184
- ZIEMER, W. P., Weakly Differentiable Functions, Springer-Verlag, 1989. Zbl0692.46022MR1014685
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.