Displaying similar documents to “The p -Laplacian in domains with small random holes”

On the existence and asymptotic behavior of the random solutions of the random integral equation with advancing argument

Henryk Gacki (1996)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

Similarity:

1. Introduction Random Integral Equations play a significant role in characterizing of many biological and engineering problems [4,5,6,7]. We present here new existence theorems for a class of integral equations with advancing argument. Our method is based on the notion of a measure of noncompactness in Banach spaces and the fixed point theorem of Darbo type. We shall deal with random integral equation with advancing argument x ( t , ω ) = h ( t , ω ) + t + δ ( t ) k ( t , τ , ω ) f ( τ , x τ ( ω ) ) d τ , (t,ω) ∈ R⁺ × Ω, (1) where (i) (Ω,A,P) is a complete probability...

Semidirected random polymers: Strong disorder and localization

Nikolaos Zygouras (2010)

Actes des rencontres du CIRM

Similarity:

Semi-directed, random polymers can be modeled by a simple random walk on Z d in a random potential - ( λ + β ω ( x ) ) x Z d , where λ > 0 , β > 0 and ω ( x ) x Z d is a collection of i.i.d., nonnegative random variables. We identify situations where the annealed and quenched costs, that the polymer pays to perform long crossings are different. In these situations we show that the polymer exhibits localization.

Further results on laws of large numbers for uncertain random variables

Feng Hu, Xiaoting Fu, Ziyi Qu, Zhaojun Zong (2023)

Kybernetika

Similarity:

The uncertainty theory was founded by Baoding Liu to characterize uncertainty information represented by humans. Basing on uncertainty theory, Yuhan Liu created chance theory to describe the complex phenomenon, in which human uncertainty and random phenomenon coexist. In this paper, our aim is to derive some laws of large numbers (LLNs) for uncertain random variables. The first theorem proved the Etemadi type LLN for uncertain random variables being functions of pairwise independent...

Slowdown estimates and central limit theorem for random walks in random environment

Alain-Sol Sznitman (2000)

Journal of the European Mathematical Society

Similarity:

This work is concerned with asymptotic properties of multi-dimensional random walks in random environment. Under Kalikow’s condition, we show a central limit theorem for random walks in random environment on d , when d > 2 . We also derive tail estimates on the probability of slowdowns. These latter estimates are of special interest due to the natural interplay between slowdowns and the presence of traps in the medium. The tail behavior of the renewal time constructed in [25] plays an important...

Random fixed points of increasing compact random maps

Ismat Beg (2001)

Archivum Mathematicum

Similarity:

Let ( Ω , Σ ) be a measurable space, ( E , P ) be an ordered separable Banach space and let [ a , b ] be a nonempty order interval in E . It is shown that if f : Ω × [ a , b ] E is an increasing compact random map such that a f ( ω , a ) and f ( ω , b ) b for each ω Ω then f possesses a minimal random fixed point α and a maximal random fixed point β .

Aging and quenched localization for one-dimensional random walks in random environment in the sub-ballistic regime

Nathanaël Enriquez, Christophe Sabot, Olivier Zindy (2009)

Bulletin de la Société Mathématique de France

Similarity:

We consider transient one-dimensional random walks in a random environment with zero asymptotic speed. An aging phenomenon involving the generalized Arcsine law is proved using the localization of the walk at the foot of “valleys“ of height log t . In the quenched setting, we also sharply estimate the distribution of the walk at time t .

Excited against the tide: a random walk with competing drifts

Mark Holmes (2012)

Annales de l'I.H.P. Probabilités et statistiques

Similarity:

We study excited random walks in i.i.d. random cookie environments in high dimensions, where the k th cookie at a site determines the transition probabilities (to the left and right) for the k th departure from that site. We show that in high dimensions, when the expected right drift of the first cookie is sufficiently large, the velocity is strictly positive, regardless of the strengths and signs of subsequent cookies. Under additional conditions on the cookie environment, we show that...

Ballistic regime for random walks in random environment with unbounded jumps and Knudsen billiards

Francis Comets, Serguei Popov (2012)

Annales de l'I.H.P. Probabilités et statistiques

Similarity:

We consider a random walk in a stationary ergodic environment in , with unbounded jumps. In addition to uniform ellipticity and a bound on the tails of the possible jumps, we assume a condition of strong transience to the right which implies that there are no “traps.” We prove the law of large numbers with positive speed, as well as the ergodicity of the environment seen from the particle. Then, we consider Knudsen stochastic billiard with a drift in a random tube in d , d 3 , which serves...

Random differential inclusions with convex right hand sides

Krystyna Grytczuk, Emilia Rotkiewicz (1991)

Annales Polonici Mathematici

Similarity:

 Abstract. The main result of the present paper deals with the existence of solutions of random functional-differential inclusions of the form ẋ(t, ω) ∈ G(t, ω, x(·, ω), ẋ(·, ω)) with G taking as its values nonempty compact and convex subsets of n-dimensional Euclidean space R n .

On some limit distributions for geometric random sums

Marek T. Malinowski (2008)

Discussiones Mathematicae Probability and Statistics

Similarity:

We define and give the various characterizations of a new subclass of geometrically infinitely divisible random variables. This subclass, called geometrically semistable, is given as the set of all these random variables which are the limits in distribution of geometric, weighted and shifted random sums. Introduced class is the extension of, considered until now, classes of geometrically stable [5] and geometrically strictly semistable random variables [10]. All the results can be straightforward...