Links between and character sums
Bollettino dell'Unione Matematica Italiana (2003)
- Volume: 6-B, Issue: 2, page 509-516
- ISSN: 0392-4041
Access Full Article
topAbstract
topHow to cite
topCodecá, P., and Nair, M.. "Links between $\Delta(x,N) = {\displaystyle \sum_{{n \leq xN, \,\, (n,N)=1}}} 1-x\phi(N)$ and character sums." Bollettino dell'Unione Matematica Italiana 6-B.2 (2003): 509-516. <http://eudml.org/doc/195953>.
@article{Codecá2003,
abstract = {We express $\Delta(x, N)$, as defined in the title, for $x=\frac\{a\}\{q\}$ and $q$ prime in terms of values of characters modulo $q$. Using this, we show that the universal lower bound for $\Delta(N)= \sup_\{x\in \mathbb\{R\}\} |\Delta (x,N)|$ can, in general, be substantially improved when $N$ is composed of primes lying in a fixed residue class modulo $q$. We also prove a corresponding improvement when $N$ is the product of the first s primes for infinitely many natural numbers $s$.},
author = {Codecá, P., Nair, M.},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {6},
number = {2},
pages = {509-516},
publisher = {Unione Matematica Italiana},
title = {Links between $\Delta(x,N) = \{\displaystyle \sum_\{\{n \leq xN, \,\, (n,N)=1\}\}\} 1-x\phi(N)$ and character sums},
url = {http://eudml.org/doc/195953},
volume = {6-B},
year = {2003},
}
TY - JOUR
AU - Codecá, P.
AU - Nair, M.
TI - Links between $\Delta(x,N) = {\displaystyle \sum_{{n \leq xN, \,\, (n,N)=1}}} 1-x\phi(N)$ and character sums
JO - Bollettino dell'Unione Matematica Italiana
DA - 2003/6//
PB - Unione Matematica Italiana
VL - 6-B
IS - 2
SP - 509
EP - 516
AB - We express $\Delta(x, N)$, as defined in the title, for $x=\frac{a}{q}$ and $q$ prime in terms of values of characters modulo $q$. Using this, we show that the universal lower bound for $\Delta(N)= \sup_{x\in \mathbb{R}} |\Delta (x,N)|$ can, in general, be substantially improved when $N$ is composed of primes lying in a fixed residue class modulo $q$. We also prove a corresponding improvement when $N$ is the product of the first s primes for infinitely many natural numbers $s$.
LA - eng
UR - http://eudml.org/doc/195953
ER -
References
top- CODECÀ, P.- NAIR, M., Extremal Values of . Canad. Math. Bull. Vol., 41 (3), (1998), 335-347. Zbl0920.11066MR1637673
- INGHAM, A. E., The Distribution of Prime Numbers, Hafner Publishing Company, New York1971. Zbl0006.39701MR184920JFM58.0193.02
- WASHINGTON, L. C., Introduction to Cyclotomic Fields, Graduate Texts in Mathematics, Springer-Verlag, New York1982. Zbl0484.12001MR718674
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.