Blow-up and global existence of a weak solution for a sine-Gordon type quasilinear wave equation
João-Paulo Dias; Mário Figueira
Bollettino dell'Unione Matematica Italiana (2000)
- Volume: 3-B, Issue: 3, page 739-750
- ISSN: 0392-4041
Access Full Article
topAbstract
topHow to cite
topDias, João-Paulo, and Figueira, Mário. "Blow-up and global existence of a weak solution for a sine-Gordon type quasilinear wave equation." Bollettino dell'Unione Matematica Italiana 3-B.3 (2000): 739-750. <http://eudml.org/doc/195984>.
@article{Dias2000,
author = {Dias, João-Paulo, Figueira, Mário},
journal = {Bollettino dell'Unione Matematica Italiana},
keywords = {break-down of strong solutions; weak entropy solutions; compensated compactness},
language = {eng},
month = {10},
number = {3},
pages = {739-750},
publisher = {Unione Matematica Italiana},
title = {Blow-up and global existence of a weak solution for a sine-Gordon type quasilinear wave equation},
url = {http://eudml.org/doc/195984},
volume = {3-B},
year = {2000},
}
TY - JOUR
AU - Dias, João-Paulo
AU - Figueira, Mário
TI - Blow-up and global existence of a weak solution for a sine-Gordon type quasilinear wave equation
JO - Bollettino dell'Unione Matematica Italiana
DA - 2000/10//
PB - Unione Matematica Italiana
VL - 3-B
IS - 3
SP - 739
EP - 750
LA - eng
KW - break-down of strong solutions; weak entropy solutions; compensated compactness
UR - http://eudml.org/doc/195984
ER -
References
top- BRAUN, O. M.- FEI, Z.- KIVSHAR, Y. S.- VÁSQUEZ, L., Kinks in the Klein-Gordon model with anharmonic interatomic interactions: a variational approach, Phys. Letters A, 157 (1991), 241-245.
- DIAS, J. P.- FIGUEIRA, M., On the blow-up of the solutions of a quasilinear wave equation with a semilinear source term, Math. Meth. Appl. Sci., 19 (1996), 1135-1140. Zbl0857.35085MR1409543
- DIAS, J. P.- FIGUEIRA, M., Existence d'une solution faible pour une équation d'ondes quasi-linéaires avec un terme de source semi-linéaire, C.R. Acad. Sci. Paris, 322, Série I (1996), 619-624. Zbl0857.35084MR1386463
- DIAS, J. P.- FIGUEIRA, M.- SANCHEZ, L., Formation of singularities for the solutions of some quasilinear wave equations, Equa. dérivées part. et applic., Articles dédiés à J. L. Lions, Gauthier-Villars, Paris, 1998, 453-460. Zbl0921.35111MR1648233
- DIPERNA, R. J., Convergence of approximate solutions to conservation laws, Arch. Rat. Mech. Anal., 82 (1983), 27-70. Zbl0519.35054MR684413
- DOUGLIS, A., Some existence theorems for hyperbolic systems of partial differential equations in two independent variables, Comm. Pure Appl. Math., 5 (1952), 119-154. Zbl0047.09101MR52666
- HARTMAN, P.- WINTER, A., On hyperbolic differential equations, Amer. J. Math., 74 (1952), 834-864. Zbl0048.33302MR51413
- LAX, P. D., Development of singularities of solutions of nonlinear hyperbolic partial differential equations, J. Math. Phys., 5 (1964), 611-613. Zbl0135.15101MR165243
- MAJDA, A., Compressible fluid flow and systems of conservation laws in several space variables, Applied Math. Sciences, Vol. 53, Springer, 1984. Zbl0537.76001MR748308
- MURAT, F., Compacité par compensation, Ann. Scuola Norm. Sup. Pisa, 5 (1978), 489-507. Zbl0399.46022MR506997
- RAUCH, J., Partial differential equations, Graduate texts in Mathematics, Vol. 128, Springer, 1991. Zbl0742.35001MR1223093
- SMOLLER, J., Shock waves and reaction-diffusion equations, Grund. math. Wissenschaften, Vol. 258, Springer, 1983. Zbl0508.35002MR688146
- TARTAR, L., Compensated compactness and applications to partial differential equations, Heriot-Watt Sympos., IV, Pitman, New York, 1979, 136-212. Zbl0437.35004MR584398
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.