Some results on invariant measures in hydrodynamics

B. Ferrario

Bollettino dell'Unione Matematica Italiana (2000)

  • Volume: 3-B, Issue: 1, page 79-94
  • ISSN: 0392-4041

How to cite

top

Ferrario, B.. "Some results on invariant measures in hydrodynamics." Bollettino dell'Unione Matematica Italiana 3-B.1 (2000): 79-94. <http://eudml.org/doc/196037>.

@article{Ferrario2000,
author = {Ferrario, B.},
journal = {Bollettino dell'Unione Matematica Italiana},
keywords = {convergence of invariant measure; white noise; existence; uniqueness; asymptotic equlibrium; global in time generalized solution; stochastic two-dimensional Navier-Stokes equations; regularity; ergodic invariant measure},
language = {eng},
month = {2},
number = {1},
pages = {79-94},
publisher = {Unione Matematica Italiana},
title = {Some results on invariant measures in hydrodynamics},
url = {http://eudml.org/doc/196037},
volume = {3-B},
year = {2000},
}

TY - JOUR
AU - Ferrario, B.
TI - Some results on invariant measures in hydrodynamics
JO - Bollettino dell'Unione Matematica Italiana
DA - 2000/2//
PB - Unione Matematica Italiana
VL - 3-B
IS - 1
SP - 79
EP - 94
LA - eng
KW - convergence of invariant measure; white noise; existence; uniqueness; asymptotic equlibrium; global in time generalized solution; stochastic two-dimensional Navier-Stokes equations; regularity; ergodic invariant measure
UR - http://eudml.org/doc/196037
ER -

References

top
  1. ALBEVERIO, S.- RIBEIRO DE FARIA, M.- HØEGH-KROHN, R., Stationary measures for the periodic Euler flow in two dimensions, J. Stat. Phys., Vol. 20, No. 6 (1979), 585-595. MR537263
  2. BENSOUSSAN, A.- TEMAM, R., Equations stochastiques du type Navier-Stokes, J. Funct. Anal., 13 (1973), 195-222. Zbl0265.60094MR348841
  3. CHAMBERS, D. H.- ADRIAN, R. J.- MOIN, P.- STEWARD, D. S.- SUNG, H. J., Karhunen-Loéve expansion of Burgers' model of turbulence, Phys. Fluids31/9 (1988), 2573-2582. 
  4. DA PRATO, G.- DEBUSSCHE, A.- TEMAM, R., Stochastic Burgers equation, NoDEA, 1 (1994), 389-402. Zbl0824.35112MR1300149
  5. DA PRATO, G.- ELWORTHY, K. D.- ZABCZYK, J., Strong Feller property for Stochastic Semilinear Equations, Stoch. Anal. and Appl. 1, Vol. 13 (1995), 35-45. Zbl0817.60081MR1313205
  6. DA PRATO, G.- GATAREK, D., Stochastic Burgers equation with correlated noise, Stochastics & Stoc. Rep., 52 (1995), 29-41. Zbl0853.35138
  7. DA PRATO, G.- ZABCZYK, J., Ergodicity for Infinite Dimensional Systems, Cambridge, 1996. Zbl0849.60052MR1417491
  8. DA PRATO, G.- ZABCZYK, J., Stochastic Equations in Infinite Dimensions, Cambridge, 1992. Zbl0761.60052MR1207136
  9. DOOB, J. L., Asymptotic properties of Markov transition probability, Trans. Am. Math. Soc., 64 (1948), 393-421. Zbl0041.45406MR25097
  10. ELWORTHY, K. D.- LI, X. M., Formulae for the Derivatives of Heat Semigroups, J. Funct. Anal., 125 (1994), 252-286. Zbl0813.60049MR1297021
  11. FERRARIO, B., Stochastic Navier-Stokes equations: analysis of the noise to have a unique invariant measure, to appear in Ann. Mat. Pura e Appl. Zbl0955.60065MR1747638
  12. FERRARIO, B., Pathwise regularity of non linear Ito equations. Application to a Stochastic Navier-Stokes equation., to appear in Stoc. Anal. Appl. Zbl0979.60049MR1814204
  13. FERRARIO, B., Invariant measures for the stochastic Navier-Stokes equations, Ph.D., Scuola Normale Superiore (1998), Pisa. Zbl0940.35213MR1773594
  14. FLANDOLI, F., Dissipativity and invariant measures for stochastic Navier-Stokes equations, NoDEA, 1 (1994), 403-423. Zbl0820.35108MR1300150
  15. FLANDOLI, F., Regularity theory and stochastic flows for parabolic SPDE's, Stochastics Monographs9London: Gordon and Breach, 1995. Zbl0838.60054MR1347450
  16. FLANDOLI, F.- MASLOWSKI, B., Ergodicity of the 2-D Navier-Stokes equation under random perturbations, Commun. Math. Phys., 171 (1995), 119-141. Zbl0845.35080MR1346374
  17. GIGA, Y.- MIYAKAWA, T., Solutions in L r of the Navier-Stokes initial value problem, Arch. Rational Mech. Anal., 89 (1985), 267-281. Zbl0587.35078MR786550
  18. JENG, D. T., Forced model equation for turbulence, Phys. Fluids12/10 (1969), 2006-2010. Zbl0187.51604
  19. MASLOWSKI, B., On probability distributions of solutions of semilinear stochastic evolution equations, Stochastics & Stoc. Rep., 45 (1993), 17-44. Zbl0792.60058
  20. MASLOWSKI, B.- SEIDLER, J., Ergodic properties of recurrent solutions of stochastic evolution equations, Osaka J. Math., 31 (1994), 969-1003. Zbl0820.60040MR1315015
  21. MONIN, A. S.- YAGLOM, A. M., Statistical Fluid Mechanics, Cambridge, Mass., MIT Press, 1971. 
  22. SEIDLER, J., Ergodic behaviour of stochastic parabolic equations, to appear in Czechoslovak Math. J. Zbl0935.60041MR1452421
  23. TEMAM, R., Behaviour at time t = 0 of the solutions of semi-linear evolution equations, J. Diff. Eq., 43 (1982), 73-92. Zbl0446.35057MR645638
  24. TEMAM, R., Infinite Dimensional Dynamical Systems in Mechanics and Physics, Springer-Verlag, New York, 1988. Zbl0662.35001MR953967
  25. TEMAM, R., Navier-Stokes Equations and Nonlinear Functional Analysis, SIAM, Philadelphia, 1983. Zbl0833.35110MR764933

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.