Some results on invariant measures in hydrodynamics
Bollettino dell'Unione Matematica Italiana (2000)
- Volume: 3-B, Issue: 1, page 79-94
- ISSN: 0392-4041
Access Full Article
topAbstract
topHow to cite
topFerrario, B.. "Some results on invariant measures in hydrodynamics." Bollettino dell'Unione Matematica Italiana 3-B.1 (2000): 79-94. <http://eudml.org/doc/196037>.
@article{Ferrario2000,
author = {Ferrario, B.},
journal = {Bollettino dell'Unione Matematica Italiana},
keywords = {convergence of invariant measure; white noise; existence; uniqueness; asymptotic equlibrium; global in time generalized solution; stochastic two-dimensional Navier-Stokes equations; regularity; ergodic invariant measure},
language = {eng},
month = {2},
number = {1},
pages = {79-94},
publisher = {Unione Matematica Italiana},
title = {Some results on invariant measures in hydrodynamics},
url = {http://eudml.org/doc/196037},
volume = {3-B},
year = {2000},
}
TY - JOUR
AU - Ferrario, B.
TI - Some results on invariant measures in hydrodynamics
JO - Bollettino dell'Unione Matematica Italiana
DA - 2000/2//
PB - Unione Matematica Italiana
VL - 3-B
IS - 1
SP - 79
EP - 94
LA - eng
KW - convergence of invariant measure; white noise; existence; uniqueness; asymptotic equlibrium; global in time generalized solution; stochastic two-dimensional Navier-Stokes equations; regularity; ergodic invariant measure
UR - http://eudml.org/doc/196037
ER -
References
top- ALBEVERIO, S.- RIBEIRO DE FARIA, M.- HØEGH-KROHN, R., Stationary measures for the periodic Euler flow in two dimensions, J. Stat. Phys., Vol. 20, No. 6 (1979), 585-595. MR537263
- BENSOUSSAN, A.- TEMAM, R., Equations stochastiques du type Navier-Stokes, J. Funct. Anal., 13 (1973), 195-222. Zbl0265.60094MR348841
- CHAMBERS, D. H.- ADRIAN, R. J.- MOIN, P.- STEWARD, D. S.- SUNG, H. J., Karhunen-Loéve expansion of Burgers' model of turbulence, Phys. Fluids31/9 (1988), 2573-2582.
- DA PRATO, G.- DEBUSSCHE, A.- TEMAM, R., Stochastic Burgers equation, NoDEA, 1 (1994), 389-402. Zbl0824.35112MR1300149
- DA PRATO, G.- ELWORTHY, K. D.- ZABCZYK, J., Strong Feller property for Stochastic Semilinear Equations, Stoch. Anal. and Appl. 1, Vol. 13 (1995), 35-45. Zbl0817.60081MR1313205
- DA PRATO, G.- GATAREK, D., Stochastic Burgers equation with correlated noise, Stochastics & Stoc. Rep., 52 (1995), 29-41. Zbl0853.35138
- DA PRATO, G.- ZABCZYK, J., Ergodicity for Infinite Dimensional Systems, Cambridge, 1996. Zbl0849.60052MR1417491
- DA PRATO, G.- ZABCZYK, J., Stochastic Equations in Infinite Dimensions, Cambridge, 1992. Zbl0761.60052MR1207136
- DOOB, J. L., Asymptotic properties of Markov transition probability, Trans. Am. Math. Soc., 64 (1948), 393-421. Zbl0041.45406MR25097
- ELWORTHY, K. D.- LI, X. M., Formulae for the Derivatives of Heat Semigroups, J. Funct. Anal., 125 (1994), 252-286. Zbl0813.60049MR1297021
- FERRARIO, B., Stochastic Navier-Stokes equations: analysis of the noise to have a unique invariant measure, to appear in Ann. Mat. Pura e Appl. Zbl0955.60065MR1747638
- FERRARIO, B., Pathwise regularity of non linear Ito equations. Application to a Stochastic Navier-Stokes equation., to appear in Stoc. Anal. Appl. Zbl0979.60049MR1814204
- FERRARIO, B., Invariant measures for the stochastic Navier-Stokes equations, Ph.D., Scuola Normale Superiore (1998), Pisa. Zbl0940.35213MR1773594
- FLANDOLI, F., Dissipativity and invariant measures for stochastic Navier-Stokes equations, NoDEA, 1 (1994), 403-423. Zbl0820.35108MR1300150
- FLANDOLI, F., Regularity theory and stochastic flows for parabolic SPDE's, Stochastics Monographs9London: Gordon and Breach, 1995. Zbl0838.60054MR1347450
- FLANDOLI, F.- MASLOWSKI, B., Ergodicity of the 2-D Navier-Stokes equation under random perturbations, Commun. Math. Phys., 171 (1995), 119-141. Zbl0845.35080MR1346374
- GIGA, Y.- MIYAKAWA, T., Solutions in of the Navier-Stokes initial value problem, Arch. Rational Mech. Anal., 89 (1985), 267-281. Zbl0587.35078MR786550
- JENG, D. T., Forced model equation for turbulence, Phys. Fluids12/10 (1969), 2006-2010. Zbl0187.51604
- MASLOWSKI, B., On probability distributions of solutions of semilinear stochastic evolution equations, Stochastics & Stoc. Rep., 45 (1993), 17-44. Zbl0792.60058
- MASLOWSKI, B.- SEIDLER, J., Ergodic properties of recurrent solutions of stochastic evolution equations, Osaka J. Math., 31 (1994), 969-1003. Zbl0820.60040MR1315015
- MONIN, A. S.- YAGLOM, A. M., Statistical Fluid Mechanics, Cambridge, Mass., MIT Press, 1971.
- SEIDLER, J., Ergodic behaviour of stochastic parabolic equations, to appear in Czechoslovak Math. J. Zbl0935.60041MR1452421
- TEMAM, R., Behaviour at time of the solutions of semi-linear evolution equations, J. Diff. Eq., 43 (1982), 73-92. Zbl0446.35057MR645638
- TEMAM, R., Infinite Dimensional Dynamical Systems in Mechanics and Physics, Springer-Verlag, New York, 1988. Zbl0662.35001MR953967
- TEMAM, R., Navier-Stokes Equations and Nonlinear Functional Analysis, SIAM, Philadelphia, 1983. Zbl0833.35110MR764933
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.