Ergodic behaviour of stochastic parabolic equations

Jan Seidler

Czechoslovak Mathematical Journal (1997)

  • Volume: 47, Issue: 2, page 277-316
  • ISSN: 0011-4642

Abstract

top
The ergodic behaviour of homogeneous strong Feller irreducible Markov processes in Banach spaces is studied; in particular, existence and uniqueness of finite and σ -finite invariant measures are considered. The results obtained are applied to solutions of stochastic parabolic equations.

How to cite

top

Seidler, Jan. "Ergodic behaviour of stochastic parabolic equations." Czechoslovak Mathematical Journal 47.2 (1997): 277-316. <http://eudml.org/doc/30364>.

@article{Seidler1997,
abstract = {The ergodic behaviour of homogeneous strong Feller irreducible Markov processes in Banach spaces is studied; in particular, existence and uniqueness of finite and $\sigma $-finite invariant measures are considered. The results obtained are applied to solutions of stochastic parabolic equations.},
author = {Seidler, Jan},
journal = {Czechoslovak Mathematical Journal},
keywords = {Markov processes; invariant measures; recurrence; stochastic parabolic equations; Markov processes; invariant measures; recurrence},
language = {eng},
number = {2},
pages = {277-316},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Ergodic behaviour of stochastic parabolic equations},
url = {http://eudml.org/doc/30364},
volume = {47},
year = {1997},
}

TY - JOUR
AU - Seidler, Jan
TI - Ergodic behaviour of stochastic parabolic equations
JO - Czechoslovak Mathematical Journal
PY - 1997
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 47
IS - 2
SP - 277
EP - 316
AB - The ergodic behaviour of homogeneous strong Feller irreducible Markov processes in Banach spaces is studied; in particular, existence and uniqueness of finite and $\sigma $-finite invariant measures are considered. The results obtained are applied to solutions of stochastic parabolic equations.
LA - eng
KW - Markov processes; invariant measures; recurrence; stochastic parabolic equations; Markov processes; invariant measures; recurrence
UR - http://eudml.org/doc/30364
ER -

References

top
  1. Récurrence fine des processus de Markov, Ann. Inst. H. Poincaré Probab. Statist. 2 (1966), 185–220. (1966) MR0199889
  2. 10.1007/BF00531519, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 8 (1967), 157–181. (1967) MR0222955DOI10.1007/BF00531519
  3. Mesure invariante des processus de Markov recurrents, Séminaire de Probabilités III, Lecture Notes in Math. 88, Springer-Verlag, Berlin, 1969, pp. 24–33. (1969) MR0260014
  4. 10.1214/aop/1176995476, Ann. Probab. 6 (1978), 541–553. (1978) Zbl0386.60056MR0494525DOI10.1214/aop/1176995476
  5. 10.1007/BF01192465, Probab. Theory Related Fields 102 (1995), 331–356. (1995) MR1339737DOI10.1007/BF01192465
  6. 10.1016/0362-546X(94)00277-O, Nonlinear Anal. 26 (1996), 241–263. (1996) MR1359472DOI10.1016/0362-546X(94)00277-O
  7. Stochastic equations in infinite dimensions, Cambridge University Press, Cambridge, 1992. (1992) MR1207136
  8. Probabilities and potential, Part A, North-Holland, Amsterdam, 1978. (1978) MR0521810
  9. Propriétés asymptotiques de probabilités de transition des processus de Markov récurrents, Ann. Inst. H. Poincaré Probab. Statist. 5 (1969), 233–244. (1969) MR0273680
  10. Osnovaniya teorii markovskikh processov, GIFML, Moskva, 1959. (1959) 
  11. Markovskie processy, GIFML, Moskva, 1963. (1963) 
  12. 10.1007/BF02104513, Comm. Math. Phys. 171 (1995), 119–141. (1995) MR1346374DOI10.1007/BF02104513
  13. 10.1090/S0002-9947-1966-0185642-8, Trans. Amer. Math. Soc. 121 (1966), 200–209. (1966) Zbl0203.19601MR0185642DOI10.1090/S0002-9947-1966-0185642-8
  14. 10.1017/S0027763000020298, Nagoya Math. J. 89 (1983), 129–193. (1983) Zbl0531.60095MR0692348DOI10.1017/S0027763000020298
  15. Borel measures, Handbook of set-theoretic topology, North-Holland, Amsterdam 1984, pp. 961–1043. MR0776641
  16. 10.1080/17442509408833868, Stochastics Stochastics Rep. 46 (1994), 41–51. (1994) MR1787166DOI10.1080/17442509408833868
  17. Transience and recurrence of Markov processes, Séminaire de Probabilités XIV – 1978/79, Lecture Notes in Math. 784, Springer-Verlag, Berlin, 1980, pp. 397–409. (1980) Zbl0431.60067MR0580144
  18. 10.1007/BF00531804, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 6 (1966), 206–223. (1966) Zbl0234.60086MR0216580DOI10.1007/BF00531804
  19. 10.1007/BF00533943, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 8 (1967), 41–48. (1967) MR0215370DOI10.1007/BF00533943
  20. Èrgodiqeskie svoĭstva vozvratnyh diffuzionnyh processov i stabilizaciya rexeniĭ zadaqi Koxi dlya paraboliqeskih uravneniĭ, Teor. Veroyatnost. i Primenen. 5 (1960), 196–214. (1960) 
  21. Ustoĭqivost sistem differencialnyh uravneniĭ pri sluqaĭnyh vozmuweniyah ih parametrov, Nauka, Moskva, 1969. (1969) MR0259283
  22. Ergodic theorems, Walter de Gruyter, Berlin-New York, 1985. (1985) Zbl0575.28009MR0797411
  23. On the strong Markov property, Mem. Fac. Sci. Kyushu Univ. Ser. A 13 (1959), 17–29. (1959) Zbl0093.14901MR0107306
  24. Some properties of one-dimensional diffusion processes, Mem. Fac. Sci. Kyusyu Univ. Ser. A 11 (1957), 117–141. (1957) MR0097128
  25. Ergodic property of N -dimensional recurrent Markov processes, Mem. Fac. Sci. Kyushu Univ. Ser. A 13 (1959), 157–172. (1959) MR0112175
  26. 10.1080/17442509308833854, Stochastics Stochastics Rep. 45 (1993), 17–44. (1993) Zbl0792.60058MR1277360DOI10.1080/17442509308833854
  27. 10.1080/17442508908833585, Stochastics Stochastics Rep. 28 (1989), 85–114. (1989) Zbl0683.60037MR1018545DOI10.1080/17442508908833585
  28. Ergodic properties of recurrent solutions of stochastic evolution equations, Osaka J. Math. 31 (1994), 965–1003. (1994) MR1315015
  29. Generalized resolvents and Harris recurrence of Markov processes, Doeblin and modern probability, Contemporary Mathematics Vol. 149, AMS, Providence, 1993, pp. 227–250. (1993) MR1229967
  30. 10.2307/1427521, Adv. in Appl. Probab. 25 (1993), 487–517. (1993) MR1234294DOI10.2307/1427521
  31. 10.1214/aop/1176989016, Ann. Probab. 21 (1993), 2189–2199. (1993) Zbl0795.60056MR1245306DOI10.1214/aop/1176989016
  32. Maximal inequalities and space-time regularity of stochastic convolutions, Math. Bohem (to appear). (to appear) MR1618707
  33. 10.1214/aop/1176988381, Ann. Probab. 23 (1995), 157–172. (1995) MR1330765DOI10.1214/aop/1176988381
  34. 10.1080/17442508408833294, Stochastics 12 (1984), 41–80. (1984) Zbl0539.60061MR0738934DOI10.1080/17442508408833294
  35. Da Prato-Zabczyk’s maximal inequality revisited I., Math. Bohem. 118 (1993), 67–106. (1993) Zbl0785.35115MR1213834
  36. Probability, Springer-Verlag, New York-Berlin, 1984. (1984) Zbl0536.60001MR0737192
  37. Asimptotiqeskie metody teorii stohastiqeskih differentsialnyh uravneniĭ, Naukova Dumka, Kiev, 1987. (1987) 
  38. On the existence and uniqueness of invariant measure for continuous time Markov processes, Lefschetz Center for Dynamical Systems Preprint # 86–18, April 1986. 
  39. Remarks on ergodic conditions for Markov processes on Polish spaces, Bull. Polish Acad. Sci. Math. 42 (1994), 103–114. (1994) Zbl0815.60072MR1810695
  40. 10.1002/cpa.3160220404, Comm. Pure Appl. Math. 22 (1969), 479–530. (1969) MR0254923DOI10.1002/cpa.3160220404
  41. On the support of diffusion processes with applications to the strong maximum principle, Proceedings Sixth Berkeley Symposium Math. Statist. Probab., Vol. III., Univ. of California Press, Berkeley-Los Angeles, 1972, pp. 333–359. (1972) MR0400425
  42. Structural properties and limit behaviour of linear stochastic systems in Hilbert spaces, Mathematical control theory, Banach Center Publications Vol. 14, PWN, Warsaw, 1985, pp. 591–609. (1985) Zbl0573.93076MR0851253
  43. Symmetric solutions of semilinear stochastic equations, Stochastic partial differential equations and applications II (Trento, 1988), Lecture Notes in Math. 1390, Springer-Verlag, Berlin, 1989, pp. 237–256. (1989) Zbl0701.60060MR1019609

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.