Ergodic behaviour of stochastic parabolic equations
Czechoslovak Mathematical Journal (1997)
- Volume: 47, Issue: 2, page 277-316
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topSeidler, Jan. "Ergodic behaviour of stochastic parabolic equations." Czechoslovak Mathematical Journal 47.2 (1997): 277-316. <http://eudml.org/doc/30364>.
@article{Seidler1997,
abstract = {The ergodic behaviour of homogeneous strong Feller irreducible Markov processes in Banach spaces is studied; in particular, existence and uniqueness of finite and $\sigma $-finite invariant measures are considered. The results obtained are applied to solutions of stochastic parabolic equations.},
author = {Seidler, Jan},
journal = {Czechoslovak Mathematical Journal},
keywords = {Markov processes; invariant measures; recurrence; stochastic parabolic equations; Markov processes; invariant measures; recurrence},
language = {eng},
number = {2},
pages = {277-316},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Ergodic behaviour of stochastic parabolic equations},
url = {http://eudml.org/doc/30364},
volume = {47},
year = {1997},
}
TY - JOUR
AU - Seidler, Jan
TI - Ergodic behaviour of stochastic parabolic equations
JO - Czechoslovak Mathematical Journal
PY - 1997
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 47
IS - 2
SP - 277
EP - 316
AB - The ergodic behaviour of homogeneous strong Feller irreducible Markov processes in Banach spaces is studied; in particular, existence and uniqueness of finite and $\sigma $-finite invariant measures are considered. The results obtained are applied to solutions of stochastic parabolic equations.
LA - eng
KW - Markov processes; invariant measures; recurrence; stochastic parabolic equations; Markov processes; invariant measures; recurrence
UR - http://eudml.org/doc/30364
ER -
References
top- Récurrence fine des processus de Markov, Ann. Inst. H. Poincaré Probab. Statist. 2 (1966), 185–220. (1966) MR0199889
- 10.1007/BF00531519, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 8 (1967), 157–181. (1967) MR0222955DOI10.1007/BF00531519
- Mesure invariante des processus de Markov recurrents, Séminaire de Probabilités III, Lecture Notes in Math. 88, Springer-Verlag, Berlin, 1969, pp. 24–33. (1969) MR0260014
- 10.1214/aop/1176995476, Ann. Probab. 6 (1978), 541–553. (1978) Zbl0386.60056MR0494525DOI10.1214/aop/1176995476
- 10.1007/BF01192465, Probab. Theory Related Fields 102 (1995), 331–356. (1995) MR1339737DOI10.1007/BF01192465
- 10.1016/0362-546X(94)00277-O, Nonlinear Anal. 26 (1996), 241–263. (1996) MR1359472DOI10.1016/0362-546X(94)00277-O
- Stochastic equations in infinite dimensions, Cambridge University Press, Cambridge, 1992. (1992) MR1207136
- Probabilities and potential, Part A, North-Holland, Amsterdam, 1978. (1978) MR0521810
- Propriétés asymptotiques de probabilités de transition des processus de Markov récurrents, Ann. Inst. H. Poincaré Probab. Statist. 5 (1969), 233–244. (1969) MR0273680
- Osnovaniya teorii markovskikh processov, GIFML, Moskva, 1959. (1959)
- Markovskie processy, GIFML, Moskva, 1963. (1963)
- 10.1007/BF02104513, Comm. Math. Phys. 171 (1995), 119–141. (1995) MR1346374DOI10.1007/BF02104513
- 10.1090/S0002-9947-1966-0185642-8, Trans. Amer. Math. Soc. 121 (1966), 200–209. (1966) Zbl0203.19601MR0185642DOI10.1090/S0002-9947-1966-0185642-8
- 10.1017/S0027763000020298, Nagoya Math. J. 89 (1983), 129–193. (1983) Zbl0531.60095MR0692348DOI10.1017/S0027763000020298
- Borel measures, Handbook of set-theoretic topology, North-Holland, Amsterdam 1984, pp. 961–1043. MR0776641
- 10.1080/17442509408833868, Stochastics Stochastics Rep. 46 (1994), 41–51. (1994) MR1787166DOI10.1080/17442509408833868
- Transience and recurrence of Markov processes, Séminaire de Probabilités XIV – 1978/79, Lecture Notes in Math. 784, Springer-Verlag, Berlin, 1980, pp. 397–409. (1980) Zbl0431.60067MR0580144
- 10.1007/BF00531804, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 6 (1966), 206–223. (1966) Zbl0234.60086MR0216580DOI10.1007/BF00531804
- 10.1007/BF00533943, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 8 (1967), 41–48. (1967) MR0215370DOI10.1007/BF00533943
- Èrgodiqeskie svoĭstva vozvratnyh diffuzionnyh processov i stabilizaciya rexeniĭ zadaqi Koxi dlya paraboliqeskih uravneniĭ, Teor. Veroyatnost. i Primenen. 5 (1960), 196–214. (1960)
- Ustoĭqivost sistem differencialnyh uravneniĭ pri sluqaĭnyh vozmuweniyah ih parametrov, Nauka, Moskva, 1969. (1969) MR0259283
- Ergodic theorems, Walter de Gruyter, Berlin-New York, 1985. (1985) Zbl0575.28009MR0797411
- On the strong Markov property, Mem. Fac. Sci. Kyushu Univ. Ser. A 13 (1959), 17–29. (1959) Zbl0093.14901MR0107306
- Some properties of one-dimensional diffusion processes, Mem. Fac. Sci. Kyusyu Univ. Ser. A 11 (1957), 117–141. (1957) MR0097128
- Ergodic property of -dimensional recurrent Markov processes, Mem. Fac. Sci. Kyushu Univ. Ser. A 13 (1959), 157–172. (1959) MR0112175
- 10.1080/17442509308833854, Stochastics Stochastics Rep. 45 (1993), 17–44. (1993) Zbl0792.60058MR1277360DOI10.1080/17442509308833854
- 10.1080/17442508908833585, Stochastics Stochastics Rep. 28 (1989), 85–114. (1989) Zbl0683.60037MR1018545DOI10.1080/17442508908833585
- Ergodic properties of recurrent solutions of stochastic evolution equations, Osaka J. Math. 31 (1994), 965–1003. (1994) MR1315015
- Generalized resolvents and Harris recurrence of Markov processes, Doeblin and modern probability, Contemporary Mathematics Vol. 149, AMS, Providence, 1993, pp. 227–250. (1993) MR1229967
- 10.2307/1427521, Adv. in Appl. Probab. 25 (1993), 487–517. (1993) MR1234294DOI10.2307/1427521
- 10.1214/aop/1176989016, Ann. Probab. 21 (1993), 2189–2199. (1993) Zbl0795.60056MR1245306DOI10.1214/aop/1176989016
- Maximal inequalities and space-time regularity of stochastic convolutions, Math. Bohem (to appear). (to appear) MR1618707
- 10.1214/aop/1176988381, Ann. Probab. 23 (1995), 157–172. (1995) MR1330765DOI10.1214/aop/1176988381
- 10.1080/17442508408833294, Stochastics 12 (1984), 41–80. (1984) Zbl0539.60061MR0738934DOI10.1080/17442508408833294
- Da Prato-Zabczyk’s maximal inequality revisited I., Math. Bohem. 118 (1993), 67–106. (1993) Zbl0785.35115MR1213834
- Probability, Springer-Verlag, New York-Berlin, 1984. (1984) Zbl0536.60001MR0737192
- Asimptotiqeskie metody teorii stohastiqeskih differentsialnyh uravneniĭ, Naukova Dumka, Kiev, 1987. (1987)
- On the existence and uniqueness of invariant measure for continuous time Markov processes, Lefschetz Center for Dynamical Systems Preprint # 86–18, April 1986.
- Remarks on ergodic conditions for Markov processes on Polish spaces, Bull. Polish Acad. Sci. Math. 42 (1994), 103–114. (1994) Zbl0815.60072MR1810695
- 10.1002/cpa.3160220404, Comm. Pure Appl. Math. 22 (1969), 479–530. (1969) MR0254923DOI10.1002/cpa.3160220404
- On the support of diffusion processes with applications to the strong maximum principle, Proceedings Sixth Berkeley Symposium Math. Statist. Probab., Vol. III., Univ. of California Press, Berkeley-Los Angeles, 1972, pp. 333–359. (1972) MR0400425
- Structural properties and limit behaviour of linear stochastic systems in Hilbert spaces, Mathematical control theory, Banach Center Publications Vol. 14, PWN, Warsaw, 1985, pp. 591–609. (1985) Zbl0573.93076MR0851253
- Symmetric solutions of semilinear stochastic equations, Stochastic partial differential equations and applications II (Trento, 1988), Lecture Notes in Math. 1390, Springer-Verlag, Berlin, 1989, pp. 237–256. (1989) Zbl0701.60060MR1019609
Citations in EuDML Documents
top- B. Ferrario, Some results on invariant measures in hydrodynamics
- B. Maslowski, I. Simão, Asymptotic Properties of Stochastic Semilinear Equations by the Method of Lower Measures
- Bohdan Maslowski, Jan Seidler, Invariant measures for nonlinear SPDE's: uniqueness and stability
- Beniamin Goldys, Bohdan Maslowski, Uniform exponential ergodicity of stochastic dissipative systems
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.