Mean values of convexly arranged numbers and monotone rearrangements in reverse integral inequalities
Bollettino dell'Unione Matematica Italiana (2005)
- Volume: 8-B, Issue: 3, page 737-764
- ISSN: 0392-4041
Access Full Article
topAbstract
topHow to cite
topClemens, Werner. "Mean values of convexly arranged numbers and monotone rearrangements in reverse integral inequalities." Bollettino dell'Unione Matematica Italiana 8-B.3 (2005): 737-764. <http://eudml.org/doc/196051>.
@article{Clemens2005,
abstract = {We analyse mean values of functions with values in the boundary of a convex two-dimensional set. As an application, reverse integral inequalities imply exactly the same inequalities for the monotone rearrangement. Sharp versions of the classical Gehring lemma, the Gurov-Resetnyak theorem and the Muckenhoupt theorem are obtained.},
author = {Clemens, Werner},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {10},
number = {3},
pages = {737-764},
publisher = {Unione Matematica Italiana},
title = {Mean values of convexly arranged numbers and monotone rearrangements in reverse integral inequalities},
url = {http://eudml.org/doc/196051},
volume = {8-B},
year = {2005},
}
TY - JOUR
AU - Clemens, Werner
TI - Mean values of convexly arranged numbers and monotone rearrangements in reverse integral inequalities
JO - Bollettino dell'Unione Matematica Italiana
DA - 2005/10//
PB - Unione Matematica Italiana
VL - 8-B
IS - 3
SP - 737
EP - 764
AB - We analyse mean values of functions with values in the boundary of a convex two-dimensional set. As an application, reverse integral inequalities imply exactly the same inequalities for the monotone rearrangement. Sharp versions of the classical Gehring lemma, the Gurov-Resetnyak theorem and the Muckenhoupt theorem are obtained.
LA - eng
UR - http://eudml.org/doc/196051
ER -
References
top- D'APUZZO, L. - SBORDONE, C., Reverse Hölder Inequalities - A sharp Result, Rend. di Matematica, (Ser. 7), 10 (1990), 357-366. Zbl0711.42027MR1076164
- BENNETT, C. - Sharpley, R., Interpolation of Operators, Academic Press1988, Pure and Applied Mathematics, 129. Zbl0647.46057MR928802
- BOJARSKI, B., Remarks on the stability of reverse Hölder inequalities and quasiconformal mappings, Ann. Acad. Sci. Fenn. Ser. A.I. Math., 10 (1985), 89- 94. Zbl0582.30016MR802470
- BOJARSKI, B. - IWANIEC, T., Analytical foundation of the theory of quasiconformal mappings in , Ann. Acad. Sci. Fenn. Ser. A. I. Math., 8 (1983), 257-324. Zbl0548.30016MR731786
- FIORENZA, A., Regularity Results for Minimizers of Certain One-Dimensional Lagrange Problems of Calculus of Variations, Bollettino U.M.I., (7) 10B (1996), 943-962, Zbl0909.49025MR1430161
- FRANCIOSI, M. - MOSCARIELLO, G., Higher integrability results, Manuscripta Math., 52 (1985), 151-170. Zbl0576.42022MR790797
- GARCIA-CUERVA, C. - RUBIO DE FRANCIA, J. L., Weighted norm inequalities and related topics, North-Holland Math. Studies, 116 (1985). Zbl0578.46046MR807149
- GEHRING, F.W., The -integrability of the partial derivates of a quasiconformal mapping, Acta Math., 130 (1973), 265-277. Zbl0258.30021MR402038
- GIAQUINTA, M., Multiple integrals in the calculus of variations and nonlinear elliptic systems, Ann. of Math. Study, 105, Princeton Univ. Press (1983). Zbl0516.49003MR717034
- GIAQUINTA, M., Introduction to regularity theory for nonlinear elliptic systemsBirkhäuser Verlag, Basel, Boston, Berlin1993. Zbl0786.35001MR1239172
- GUROV, L. G. - RESETNYAK, YU. K., A certain analogue of the concept of a function with bounded mean oscillationSibirsk., Math. Zh., 17, 3 (1976), 540- 546. Zbl0341.26006MR427565
- IWANIEC, T., On -integrability in PDE's and quasiregular mappings for large exponents, Ann. Acad. Sci. Fenn. Ser. A. I., 7 (1982), 301-322. Zbl0505.30011MR686647
- IWANIEC, T., The Gehring Lemma, Proc. of the int. Symp., Ann Arbor, MI, USA (1998), 181-204. Zbl0888.30017MR1488451
- IWANIEC, T. - MARTIN, G., Geometric function theory and non-linear analysis, Oxford Math. Mono., Oxford Univ. Press, Oxford, 2001. Zbl1045.30011MR1859913
- KLEMES, I., A mean oscillation inequality, Proc. Am. Math. Soc., 93, Nr. 3 (1985), 497-500. Zbl0572.46025MR774010
- Kinnunen, J., Sharp results on reverse Hölder inequalities, Ann. Acad. Sci. Fenn., Ser. A, 1. Mathematica, Dissert., 95 (1994), 4-34. Zbl0816.26008MR1283432
- KOLYADA, V.I., Rearrangements of functions and imbedding theorems, Russ. Math. Surv., 44, No. 5 (1989), 73-117. Zbl0715.41050MR1040269
- KORENOVSKIJ, A. A., The exact continuation of a reverse Hölder inequality and Muckenhoupt's conditions, Math. notes, 52, No. 6 (1992), 1192-1201. Zbl0807.42015MR1208001
- KORENOVSKIJ, A. A., On the connection between mean value oscillation and exact integrability classes of functions, Math. USSR Sbornik, 71, No. 2 (1992), 561-567; transl. from Mat. Sb., 181, No. 12 (1990), 1721-1727. Zbl0776.30025MR1099524
- MUCKENHOUPT, B., Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc., 165 (1972), 207-226. Zbl0236.26016MR293384
- NANIA, L., On some reverse integral inequalities, J. Austral. Math. Soc. (Ser. A) 49 (1990), 319-326. Zbl0715.26010MR1061052
- SAGAN, H., Space-filling curves, Springer Verlag, New York, 1994. Zbl0806.01019MR1299533
- SBORDONE, C., On some integral inequalities and their applications to the calculus of variations, Boll. Un. Mat. Ital., Ana. Func. Appl., 5-10(6,1) (1986), 73-94. Zbl0678.49008MR897186
- STEIN, E. M., Harmonic analysis: Real-variable methods, orthogonality and oscillatory integrals. Princeton Math. Series, 43, Princeton, New Jersey1993. Zbl0821.42001MR1232192
- WIK, I., Reverse Hölder inequalities with constant close to 1, Ric. Mat., 39, No. 1 (1990), 151-157. Zbl0746.30022MR1101311
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.