A structure theory for Jordan -pairs
A. J. Calderón Martín; C. Martín González
Bollettino dell'Unione Matematica Italiana (2004)
- Volume: 7-B, Issue: 1, page 61-77
- ISSN: 0392-4041
Access Full Article
topAbstract
topHow to cite
topCalderón Martín, A. J., and González, C. Martín. "A structure theory for Jordan $H^*$-pairs." Bollettino dell'Unione Matematica Italiana 7-B.1 (2004): 61-77. <http://eudml.org/doc/196157>.
@article{CalderónMartín2004,
abstract = {Jordan $H^\{*\}$-pairs appear, in a natural way, in the study of Lie $H^\{*\}$-triple systems ([3]). Indeed, it is shown in [4, Th. 3.1] that the problem of the classification of Lie $H^\{*\}$-triple systems is reduced to prove the existence of certain $L^\{*\}$-algebra envelopes, and it is also shown in [3] that we can associate topologically simple nonquadratic Jordan $H^\{*\}$-pairs to a wide class of Lie $H^\{*\}$-triple systems and then the above envelopes can be obtained from a suitable classification, in terms of associative $H^\{*\}$-pairs, of these pairs. In this paper we give a classification theorem for topologically simple non-quadratic Jordan $H^\{*\}$-pairs in terms of associative $H^\{*\}$-pairs and certain of their anti-isomorphisms. Some consequences of this classification are also stated.},
author = {Calderón Martín, A. J., González, C. Martín},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {2},
number = {1},
pages = {61-77},
publisher = {Unione Matematica Italiana},
title = {A structure theory for Jordan $H^*$-pairs},
url = {http://eudml.org/doc/196157},
volume = {7-B},
year = {2004},
}
TY - JOUR
AU - Calderón Martín, A. J.
AU - González, C. Martín
TI - A structure theory for Jordan $H^*$-pairs
JO - Bollettino dell'Unione Matematica Italiana
DA - 2004/2//
PB - Unione Matematica Italiana
VL - 7-B
IS - 1
SP - 61
EP - 77
AB - Jordan $H^{*}$-pairs appear, in a natural way, in the study of Lie $H^{*}$-triple systems ([3]). Indeed, it is shown in [4, Th. 3.1] that the problem of the classification of Lie $H^{*}$-triple systems is reduced to prove the existence of certain $L^{*}$-algebra envelopes, and it is also shown in [3] that we can associate topologically simple nonquadratic Jordan $H^{*}$-pairs to a wide class of Lie $H^{*}$-triple systems and then the above envelopes can be obtained from a suitable classification, in terms of associative $H^{*}$-pairs, of these pairs. In this paper we give a classification theorem for topologically simple non-quadratic Jordan $H^{*}$-pairs in terms of associative $H^{*}$-pairs and certain of their anti-isomorphisms. Some consequences of this classification are also stated.
LA - eng
UR - http://eudml.org/doc/196157
ER -
References
top- ANQUELA, J. A.- CORTÉS, T., Primitive Jordan Pairs and Triple Systems, J. Algebra, 184, no. 2 (1996), 632-678. Zbl0857.17032MR1409234
- CALDERÓN, A. J.- MARTÍN, C., Dual pairs techniques in -theories, J. Pure Appl. Algebra, 133 (1998), 59-63. Zbl0962.17021MR1653695
- CALDERÓN, A. J.- MARTÍN, C., On -triples and Jordan -pairs, Ring theory and Algebraic Geometry, (Granja, Hermida, Verschoren eds.) Marcel Dekker, Inc. Chapter 4 (2001), 87-94. MR1844085
- CALDERÓN, A. J.- MARTÍN, C., Hilbert space methods in the theory of Lie triple systems, Recent Progress in Functional Analysis, K. D. Bierstedt, J. Bonet, M. Maestre, J. Schmets (ed.) in the series North-Holland Math. Studies (2001), 309-319. MR1861767
- CALDERÓN, A. J.- MARTÍN, C., On Associative and Jordan -pairs, Int. J. Math. Game Theory Algebra, 11, no. 4 (2001), 1-12. Zbl1034.46048MR1859391
- CASTELLÓN, A.- CUENCA, J. A., Isomorphisms of -triple systems, Ann. della Scuola Norm. Sup. Pisa Cl. Sci. 4, no. 4 (1992), 507-514. Zbl0805.46055MR1205882
- CASTELLÓN, A.- CUENCA, J. A., Associative -triple systems, In Nonassociative Algebraic Models. Nova Science Publishers, S. González and H.C. Myung Eds. (1992), 45-67. Zbl0794.46044MR1189612
- CASTELLÓN, A.- CUENCA, J. A., The Centroid and Metacentroid of an -triple system., Bull. Soc. Math. Belg, 45, Fac. 1 et 2 (1993), 85-93. MR1316233
- CASTELLÓN, A.- CUENCA, J. A., Jordan -triple systems, in Nonassociative Algebras and its Applications, S. González editor, Kluwer Academic Publishers (1994), 66-72. MR1338159
- CASTELLÓN, A.- CUENCA, J. A.- MARTÍN, C., Ternary -algebras, Boll. Un. Mat. Ital. B (7), 6, no. 1 (1992), 217-228. MR1164947
- CASTELLÓN, A.- CUENCA, J. A.- MARTÍN, C., Special Jordan -triple systems, Comm. Alg, 28, no. 10 (2000), 4699-4706. MR1779866
- CUENCA, J. A.- GARCÍA, A.- MARTÍN, C.. Jacobson density for associative pairs and its applications, Comm. Alg., 17, no. 10 (1989), 2595-2610. Zbl0694.17001MR1019184
- D'AMOUR, A., Jordan triple homomorphisms of associative structures, Comm. Algebra, 19, no. 4 (1991), 1229-1247. Zbl0728.17018MR1102336
- D'AMOUR, A., Zel'manov polynomials in quadratic Jordan triple systems, J. Algebra, 140, no. 1 (1991), 160-183. Zbl0796.17031MR1114912
- FERNÁNDEZ, A.- GARCÍA, E.- SÁNCHEZ, E., Prime Nondegenerate Jordan Triple Systems with Minimal Inner Ideals, Nonassociative algebraic modelsNova Sci. Publ., Commack, NY. (1992), 143-166. Zbl0769.17022MR1189618
- JACOBSON, N., Structure of Rings, American Mathematical Society Colloquium Publications vol. 37, 2nd ed. Providence R.I. Zbl0073.02002MR81264
- KAUP, W., Über die Klassifikation der symmetrischen hermiteschen Mannigfaltigkeiten unendlicher Dimension, I, Math. Ann., 257 (1981), 363-486. Zbl0482.32010MR639580
- KAUP, W., Über die Klassifikation der symmetrischen hermiteschen Mannigfaltigkeiten unendlicher Dimension, II, Math. Ann., 262 (1983), 57-75. Zbl0482.32011MR690007
- LOOS, O., On the socle of a Jordan pair, Collect. Math, 40, no. 2 (1989), 109-125. Zbl0729.17022MR1094683
- LOOS, O., Jordan pairs, Lecture Notes in Mathematics, Springer-Verlag, Berlin-New York, vol. 460, 1975. Zbl0301.17003MR444721
- MCCRIMMON, K.- ZEL'MANOV, E., The Stucture of Strongly Prime Quadratic Jordan Algebras, Adv. in Math, 69, no. 2 (1988), 133-222. Zbl0656.17015
- NEHER, E., Cartan-Involutionen von halbeinfachen rellen Jordan Triplesystemen, Math. Z, 169, no. 2 (1979), 271-292. Zbl0403.17014MR554530
- NEHER, E., On the classification of Lie and Jordan triple systems, Comm. Algebra, 13, no. 12 (1985), 2615-2667. Zbl0583.17001MR811526
- RODRIGUEZ, A., Jordan axioms for -algebras, Manuscripta Math., 61 (1988), 297-314. Zbl0665.46056MR949820
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.