Boundary map and overrings of half-factorial domains
Nathalie Gonzalez; Sébastien Pellerin
Bollettino dell'Unione Matematica Italiana (2005)
- Volume: 8-B, Issue: 1, page 173-185
- ISSN: 0392-4041
Access Full Article
topAbstract
topHow to cite
topGonzalez, Nathalie, and Pellerin, Sébastien. "Boundary map and overrings of half-factorial domains." Bollettino dell'Unione Matematica Italiana 8-B.1 (2005): 173-185. <http://eudml.org/doc/196178>.
@article{Gonzalez2005,
abstract = {We investigate factorization of elements in overrings of a half-factorial domain $A$ in relation with the behaviour of the boundary map of $A$. It turns out that a condition, called $\mathcal\{C\}^\{\star\}$, on the extension plays a central role in this study. We finally apply our results to the special case of $A+XB[X]$ polynomial rings.},
author = {Gonzalez, Nathalie, Pellerin, Sébastien},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {2},
number = {1},
pages = {173-185},
publisher = {Unione Matematica Italiana},
title = {Boundary map and overrings of half-factorial domains},
url = {http://eudml.org/doc/196178},
volume = {8-B},
year = {2005},
}
TY - JOUR
AU - Gonzalez, Nathalie
AU - Pellerin, Sébastien
TI - Boundary map and overrings of half-factorial domains
JO - Bollettino dell'Unione Matematica Italiana
DA - 2005/2//
PB - Unione Matematica Italiana
VL - 8-B
IS - 1
SP - 173
EP - 185
AB - We investigate factorization of elements in overrings of a half-factorial domain $A$ in relation with the behaviour of the boundary map of $A$. It turns out that a condition, called $\mathcal{C}^{\star}$, on the extension plays a central role in this study. We finally apply our results to the special case of $A+XB[X]$ polynomial rings.
LA - eng
UR - http://eudml.org/doc/196178
ER -
References
top- ANDERSON, D. F. - CHAPMAN, S. T. - SMITH, W. W., Overrings of half-factorial domains, Canad. Math. Bull., 37 (1994), 437-442. Zbl0815.13001MR1303668
- ANDERSON, D. F. - PARK, J., Locally half-factorial domains, Houston J. Math., 23 (1997), 617-630. Zbl0922.13015MR1687334
- ANDERSON, D. F. - PARK, J., Factorization in subrings of and , Lecture Notes in Pure and Applied Mathematics, vol. 189, Marcel Dekker, New York, 1997, 227-241. Zbl0902.13014MR1460775
- CARLITZ, L., A characterization of algebraic number fields with class number two, Proc. Amer. Math. Soc., 11 (1960), 391-392. Zbl0202.33101MR111741
- CHAPMAN, S. T. - COYKENDALL, J., Half-factorial domains, a survey, in Non-Noetherian Commutative Ring Theory, Kluwer Academic Publishers, 2001. Zbl0987.13010MR1858159
- CHAPMAN, S. T. - GLAZ, S., One hundred problems in commutative ring theory, in Non-Noetherian Commutative Ring Theory, Kluwer Academic Publishers, 2001. Zbl0979.13001MR1858175
- CHAPMAN, S. T. - SMITH, W. W., Factorization in Dedekind domains with finite class group, Israel J. Math, 71 (1990), 65-95. Zbl0717.13014MR1074505
- COYKENDALL, J., A characterization of polynomial rings with the half-factorial property, Lecture Notes in Pure and Applied Mathematics, Marcel Dekker, New York, 189 (1997), 291-294. Zbl0886.13010MR1460780
- COYKENDALL, J., The half-factorial property in integral extensions, Comm. Algebra, 27 (7) (1999), 3153-3159. Zbl0956.13005MR1695319
- COYKENDALL, J., Half-factorial domains in quadratic fields, J. Algebra, 235 (2001), 417-430. Zbl0989.11058MR1805465
- COYKENDALL, J., On the integral closure of a half-factorial domain, J. Pure Appl. Algebra, 180 (2003), 25-34. Zbl1031.13011MR1966521
- GONZALEZ, N., Elasticity of domains, J. Pure Appl. Algebra, 138 (1999), 119-137. Zbl0935.13002MR1689617
- [13] GONZALEZ, N. - PELLERIN, S. - ROBERT, R., Elasticity of domains where A is a UFD, J. Pure Appl. Algebra, 160 (2001), 183-194. Zbl1001.13008MR1835999
- HALTER-KOCH, F., Factorization of algebraic integers, Ber. Math. Stat. Sektion im Forschungszentrum, 191 (1983), 1-24. Zbl0506.12005
- KIM, H., Examples of half-factorial domains, Canad. Math. Bull., 43 (2000), 362-367. Zbl1032.13010MR1776064
- PICAVET-LHERMITTE, M., Factorization in some orders with a PID as integral closure, Algebraic number theory and Diophantine analysis (Graz, 1998), 365-390, de Gruyter, Berlin, 2000. Zbl0971.13016MR1770474
- ZAKS, A., Half factorial domains, Israel J. Math., 37 (1980), 281-302. Zbl0509.13017MR599463
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.