A characterization of the essential spectrum and applications
Bollettino dell'Unione Matematica Italiana (2002)
- Volume: 5-B, Issue: 3, page 805-825
- ISSN: 0392-4041
Access Full Article
topAbstract
topHow to cite
topJeribi, Aref. "A characterization of the essential spectrum and applications." Bollettino dell'Unione Matematica Italiana 5-B.3 (2002): 805-825. <http://eudml.org/doc/196180>.
@article{Jeribi2002,
abstract = {In this article the essential spectrum of closed, densely defined linear operators is characterized on a large class of spaces, which possess the Dunford-Pettis property or which isomorphic to one of the spaces $L_\{p\}(\Omega)$$p>1$. A practical criterion guaranteeing its stability, for perturbed operators, is given. Further we apply the obtained results to investigate the essential spectrum of one-dimensional transport equation with general boundary conditions. Finally, sufficient conditions in terms of boundary and collision operators assuring the invariance of the essential spectrum of the streaming operator are discussed.},
author = {Jeribi, Aref},
journal = {Bollettino dell'Unione Matematica Italiana},
keywords = {transport equation; essential spectra; Dunford-Pettis property},
language = {eng},
month = {10},
number = {3},
pages = {805-825},
publisher = {Unione Matematica Italiana},
title = {A characterization of the essential spectrum and applications},
url = {http://eudml.org/doc/196180},
volume = {5-B},
year = {2002},
}
TY - JOUR
AU - Jeribi, Aref
TI - A characterization of the essential spectrum and applications
JO - Bollettino dell'Unione Matematica Italiana
DA - 2002/10//
PB - Unione Matematica Italiana
VL - 5-B
IS - 3
SP - 805
EP - 825
AB - In this article the essential spectrum of closed, densely defined linear operators is characterized on a large class of spaces, which possess the Dunford-Pettis property or which isomorphic to one of the spaces $L_{p}(\Omega)$$p>1$. A practical criterion guaranteeing its stability, for perturbed operators, is given. Further we apply the obtained results to investigate the essential spectrum of one-dimensional transport equation with general boundary conditions. Finally, sufficient conditions in terms of boundary and collision operators assuring the invariance of the essential spectrum of the streaming operator are discussed.
LA - eng
KW - transport equation; essential spectra; Dunford-Pettis property
UR - http://eudml.org/doc/196180
ER -
References
top- BOULANOUAR, M.- LEBOUCHER, L., Une équation de transport dans la dynamique des populations cellulaires, C. R. Acad. Sci. Paris, Serie I, 321 (1995), 305-308. Zbl0835.92025MR1346131
- DAUTRAY, R.- LIONS, J. L., Analyse Mathématique et Calcul Numérique, Tome 9, Masson, Paris, 1988.
- DIESTEL, J., A survey of results related to Dunfor-Pettis property, in «Contemporary Math.2, Amer. Math. Soc. of Conf. on Integration, Topology and Geometry in Linear Spaces» (1980), 15-60. Zbl0571.46013MR621850
- DUNFORD, N. AND PETTIS, , Linear operations on summable functions, Trans. Amer. Math. Soc., 47 (1940), 323-392. MR2020JFM66.0556.01
- DUNFORD, N.- SCHWARTZ, J. T., Linears operators, Part 1, Interscience Publishers Inc., New York, 1958. Zbl0084.10402MR117523
- BOHBERG, I.- MARKUS, A.- FELDMAN, I. A., Normally solvable operators and ideals associated with them, Amer. Math. Soc. Transl. ser. 2, 61 (1967), 63-84. Zbl0181.40601
- GOLDBERT, S., Unbounded Linear Operators, McGraw-Hill, New-York, 1966. Zbl0148.12501
- GREENBERG, W.- VAN DER MEE, G.- PROTOPOPESCU, V., Boundary Value Problems in Abstract Kinetic Theory, Birkhauser, Basel, 1987. Zbl0624.35003MR896904
- GREINER, G., Spectral properties and asymptotic behaviour of the linear transport equation, Math. Z., 185 (1984), 167-177. Zbl0567.45001MR731337
- GROTHENDIECK, A., Sur les applications linéaires faiblement compactes d'espaces du type , Canad. J. Math., 5 (1953), 129-173. Zbl0050.10902MR58866
- GUSTAFSON, K.- WEIDMANN, J., On the essential spectrum, J. Math. Anal. Appl., 25, 6 (1969), 121-127. Zbl0189.44104MR242004
- JERIBI, A., Quelques remarques sur les opérateurs de Frédholm et application à l'équation de transport, C. R. Acad. Sci. Paris, Série I, 325 (1997), 43-48. Zbl0883.47006MR1461395
- JERIBI, A., Quelques remarques sur le spectre de Weyl et applications, C. R. Acad. Sci. Paris, Série I, 327 (1998), 485-490. Zbl0932.47002MR1652578
- JERIBI, A.- LATRACH, K., Quelques remarques sur le spectre essentiel et application à l'équation de transport, C. R. Acad. Sci. Paris, Série I, 323 (1996), 469-474. Zbl0861.47001MR1408978
- JÖRGEN, K., Linear integral operator, Pitman. Advanced publishing program (1982).
- KAPER, H. G.- LEKKERKERKER, C. G.- HEJTMANEK, J., Spetral Methods in Linear Transport Theory, Birkhauser, Basel, 1982. Zbl0498.47001MR685594
- KATO, T., Perturbation theory for nullity, deficiency and other quantities of linear operators, J. Anal. Math., 6 (1958), 261-322. Zbl0090.09003MR107819
- LATRACH, K., Compactness properties for linear transport operator with abstract boundary conditions in slab geometry, Trans. Theor. Stat. Phys., 22 (1993), 39-65. Zbl0774.45006MR1198878
- LATRACH, K., Some remarks on the essential spectrum of transport operators with abstract boundary conditions, J. Math. Phys., 35 (1994), 6199-6212. Zbl0819.47068MR1299947
- LATRACH, K., Time asymptotic behaviour for linear transport equation with abstract boundary conditions in slab geometry, Trans. Theor. Stat. Phys., 23 (1994), 633-670. Zbl0816.45008MR1272677
- LATRACH, K., Description of the real point spectrum for a class of neutron transport operators, Trans. Theor. Stat. Phys., 23 (1993), 595-630. Zbl0786.45010MR1229293
- LATRACH, K., Quelques propriétés spectrales d'opérateurs de transport avec des conditions aux limites abstraites, C. R. Acad. Sci. Paris, Série I, 320 (1995), 809-814. Zbl0827.35108MR1326687
- LATRACH, K., Essential spectra on spaces with the Dunfor-Pettis property, J. Math. Anal. Appl., 233 (1999), 607-722. Zbl0930.47008MR1689610
- LATRACH, K.- JERIBI, A., On the essential spectrum of transport operators on L1- spaces, J. Math. Phys., 37 (1996), 6486-6494. Zbl0876.47002MR1419181
- LATRACH, K.- JERIBI, A., Sur une équation de transport intervenanten dynamique des populations, C. R. Acad. Sci. Paris, Série I, 325 (1997), 1087-1109. Zbl0897.35020MR1614016
- LATRACH, K. JERIBI, A., A nonlinear boundary value problem arising in growing cell populations, Nonli. Anal., Ser. A, Theory methods, 36 (7) (1999), 843-862. Zbl0935.35170MR1682848
- LATRACH, K.- JERIBI, A., Some results on Fredholm operators, essential spectra, and application, J. Math. Anal., 225 (1998), 461-485. Zbl0927.47007MR1644272
- LEBOWITZ, J. L.- RUBINOW, S. I., A theory for the age and generation time distribution of a microbial population, J. Math. Biol., 1 (1974), 17-36. Zbl0402.92023MR496810
- LINDENSTRAUSS, J.- TZAFRIRI, L., Classical Banach Spaces I, Springer-Verlag, Berlin-Heidelberg-New York, 1977. Zbl0362.46013MR500056
- MILMAN, V. D., Some properties of strictly singular operators, Functional Ana. Appl., 3 (1969), 77-78. Zbl0179.17801MR241997
- MOKHTAR-KHARROUBI, M., Spectral theory of the neutron transport operator in bounded geometries, Trans. Theor. Stat. Phys., 16 (1987), 467-502. Zbl0629.45011MR906915
- MOKHTAR-KHARROUBI, M., Time asymptotic behaviour and compactness in neutron transport theory, Europ. J. of Mech., B Fluid, 11 (1992), 39-68. MR1151539
- PALCZEWSKI, A., Spectral properties of the space nonhomogeneous linearized Boltzmann operator, Transp. Theor. Stat. Phys., 13 (1984), 409-430. Zbl0585.47023MR759864
- PELCZYNSKI, A., Strictly singular and cosingular operators, Bull. Acad. Polon. Sci., 13 (1965), 31-41. Zbl0138.38604MR177300
- ROTENBERG, M., Transport theory for growing cell populations, J. Theor. Biol., 103 (1983), 181-199. MR713945
- SCHECHTER, M., Principles of functional analysis, Academic Press, 1971. Zbl0211.14501MR445263
- SCHECHTER, M., Spectra of Partial Differential Operators, Horth-Holland, Amsterdam, 1971. Zbl0225.35001MR447834
- SCHECHTER, M., On the essential spectrum of an arbitrary operator, J. Math. Anal. Appl., 13 (1965), 205-215. Zbl0147.12101MR188798
- VAN DER MEE, C.- ZWEIFEL, P., A. Fokker-Plank equation for growing cell populations, J. Math. Biol., 25 (1987), 61-72. Zbl0644.92019MR886612
- VIDAV, I., Existence and uniqueness of nonnegative eigenfunction of the Boltzmann operator, J. Math. Anal. Appl., 22 (1968), 144-155. Zbl0155.19203MR230531
- VOIGT, J., Positivity in time dependent transport theory, Acta Aplicandae Mathematicae, 2 (1984), 311-331. Zbl0579.47040MR753698
- WEIS, L., On perturbation of Fredholm operators in -spaces, Proc. Amer. Math. Soc., 67 (1977), 87-92. Zbl0377.46016MR467377
- WOLF, F., On the essential spectrum of partial differential boundary problems, Comm. Pure Appl. Math., 12 (1959), 211-228. Zbl0087.30501MR107750
- WOLF, F., On the invariance of the essential spectrum under a change of the boundary conditions of partial differential operators, Indag. Math., 21 (1959), 142-147. Zbl0086.08203MR107751
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.