A characterization of the essential spectrum and applications

Aref Jeribi

Bollettino dell'Unione Matematica Italiana (2002)

  • Volume: 5-B, Issue: 3, page 805-825
  • ISSN: 0392-4041

Abstract

top
In this article the essential spectrum of closed, densely defined linear operators is characterized on a large class of spaces, which possess the Dunford-Pettis property or which isomorphic to one of the spaces L p Ω p > 1 . A practical criterion guaranteeing its stability, for perturbed operators, is given. Further we apply the obtained results to investigate the essential spectrum of one-dimensional transport equation with general boundary conditions. Finally, sufficient conditions in terms of boundary and collision operators assuring the invariance of the essential spectrum of the streaming operator are discussed.

How to cite

top

Jeribi, Aref. "A characterization of the essential spectrum and applications." Bollettino dell'Unione Matematica Italiana 5-B.3 (2002): 805-825. <http://eudml.org/doc/196180>.

@article{Jeribi2002,
abstract = {In this article the essential spectrum of closed, densely defined linear operators is characterized on a large class of spaces, which possess the Dunford-Pettis property or which isomorphic to one of the spaces $L_\{p\}(\Omega)$$p>1$. A practical criterion guaranteeing its stability, for perturbed operators, is given. Further we apply the obtained results to investigate the essential spectrum of one-dimensional transport equation with general boundary conditions. Finally, sufficient conditions in terms of boundary and collision operators assuring the invariance of the essential spectrum of the streaming operator are discussed.},
author = {Jeribi, Aref},
journal = {Bollettino dell'Unione Matematica Italiana},
keywords = {transport equation; essential spectra; Dunford-Pettis property},
language = {eng},
month = {10},
number = {3},
pages = {805-825},
publisher = {Unione Matematica Italiana},
title = {A characterization of the essential spectrum and applications},
url = {http://eudml.org/doc/196180},
volume = {5-B},
year = {2002},
}

TY - JOUR
AU - Jeribi, Aref
TI - A characterization of the essential spectrum and applications
JO - Bollettino dell'Unione Matematica Italiana
DA - 2002/10//
PB - Unione Matematica Italiana
VL - 5-B
IS - 3
SP - 805
EP - 825
AB - In this article the essential spectrum of closed, densely defined linear operators is characterized on a large class of spaces, which possess the Dunford-Pettis property or which isomorphic to one of the spaces $L_{p}(\Omega)$$p>1$. A practical criterion guaranteeing its stability, for perturbed operators, is given. Further we apply the obtained results to investigate the essential spectrum of one-dimensional transport equation with general boundary conditions. Finally, sufficient conditions in terms of boundary and collision operators assuring the invariance of the essential spectrum of the streaming operator are discussed.
LA - eng
KW - transport equation; essential spectra; Dunford-Pettis property
UR - http://eudml.org/doc/196180
ER -

References

top
  1. BOULANOUAR, M.- LEBOUCHER, L., Une équation de transport dans la dynamique des populations cellulaires, C. R. Acad. Sci. Paris, Serie I, 321 (1995), 305-308. Zbl0835.92025MR1346131
  2. DAUTRAY, R.- LIONS, J. L., Analyse Mathématique et Calcul Numérique, Tome 9, Masson, Paris, 1988. 
  3. DIESTEL, J., A survey of results related to Dunfor-Pettis property, in «Contemporary Math.2, Amer. Math. Soc. of Conf. on Integration, Topology and Geometry in Linear Spaces» (1980), 15-60. Zbl0571.46013MR621850
  4. DUNFORD, N. AND PETTIS, , Linear operations on summable functions, Trans. Amer. Math. Soc., 47 (1940), 323-392. MR2020JFM66.0556.01
  5. DUNFORD, N.- SCHWARTZ, J. T., Linears operators, Part 1, Interscience Publishers Inc., New York, 1958. Zbl0084.10402MR117523
  6. BOHBERG, I.- MARKUS, A.- FELDMAN, I. A., Normally solvable operators and ideals associated with them, Amer. Math. Soc. Transl. ser. 2, 61 (1967), 63-84. Zbl0181.40601
  7. GOLDBERT, S., Unbounded Linear Operators, McGraw-Hill, New-York, 1966. Zbl0148.12501
  8. GREENBERG, W.- VAN DER MEE, G.- PROTOPOPESCU, V., Boundary Value Problems in Abstract Kinetic Theory, Birkhauser, Basel, 1987. Zbl0624.35003MR896904
  9. GREINER, G., Spectral properties and asymptotic behaviour of the linear transport equation, Math. Z., 185 (1984), 167-177. Zbl0567.45001MR731337
  10. GROTHENDIECK, A., Sur les applications linéaires faiblement compactes d'espaces du type C K , Canad. J. Math., 5 (1953), 129-173. Zbl0050.10902MR58866
  11. GUSTAFSON, K.- WEIDMANN, J., On the essential spectrum, J. Math. Anal. Appl., 25, 6 (1969), 121-127. Zbl0189.44104MR242004
  12. JERIBI, A., Quelques remarques sur les opérateurs de Frédholm et application à l'équation de transport, C. R. Acad. Sci. Paris, Série I, 325 (1997), 43-48. Zbl0883.47006MR1461395
  13. JERIBI, A., Quelques remarques sur le spectre de Weyl et applications, C. R. Acad. Sci. Paris, Série I, 327 (1998), 485-490. Zbl0932.47002MR1652578
  14. JERIBI, A.- LATRACH, K., Quelques remarques sur le spectre essentiel et application à l'équation de transport, C. R. Acad. Sci. Paris, Série I, 323 (1996), 469-474. Zbl0861.47001MR1408978
  15. JÖRGEN, K., Linear integral operator, Pitman. Advanced publishing program (1982). 
  16. KAPER, H. G.- LEKKERKERKER, C. G.- HEJTMANEK, J., Spetral Methods in Linear Transport Theory, Birkhauser, Basel, 1982. Zbl0498.47001MR685594
  17. KATO, T., Perturbation theory for nullity, deficiency and other quantities of linear operators, J. Anal. Math., 6 (1958), 261-322. Zbl0090.09003MR107819
  18. LATRACH, K., Compactness properties for linear transport operator with abstract boundary conditions in slab geometry, Trans. Theor. Stat. Phys., 22 (1993), 39-65. Zbl0774.45006MR1198878
  19. LATRACH, K., Some remarks on the essential spectrum of transport operators with abstract boundary conditions, J. Math. Phys., 35 (1994), 6199-6212. Zbl0819.47068MR1299947
  20. LATRACH, K., Time asymptotic behaviour for linear transport equation with abstract boundary conditions in slab geometry, Trans. Theor. Stat. Phys., 23 (1994), 633-670. Zbl0816.45008MR1272677
  21. LATRACH, K., Description of the real point spectrum for a class of neutron transport operators, Trans. Theor. Stat. Phys., 23 (1993), 595-630. Zbl0786.45010MR1229293
  22. LATRACH, K., Quelques propriétés spectrales d'opérateurs de transport avec des conditions aux limites abstraites, C. R. Acad. Sci. Paris, Série I, 320 (1995), 809-814. Zbl0827.35108MR1326687
  23. LATRACH, K., Essential spectra on spaces with the Dunfor-Pettis property, J. Math. Anal. Appl., 233 (1999), 607-722. Zbl0930.47008MR1689610
  24. LATRACH, K.- JERIBI, A., On the essential spectrum of transport operators on L1- spaces, J. Math. Phys., 37 (1996), 6486-6494. Zbl0876.47002MR1419181
  25. LATRACH, K.- JERIBI, A., Sur une équation de transport intervenanten dynamique des populations, C. R. Acad. Sci. Paris, Série I, 325 (1997), 1087-1109. Zbl0897.35020MR1614016
  26. LATRACH, K. JERIBI, A., A nonlinear boundary value problem arising in growing cell populations, Nonli. Anal., Ser. A, Theory methods, 36 (7) (1999), 843-862. Zbl0935.35170MR1682848
  27. LATRACH, K.- JERIBI, A., Some results on Fredholm operators, essential spectra, and application, J. Math. Anal., 225 (1998), 461-485. Zbl0927.47007MR1644272
  28. LEBOWITZ, J. L.- RUBINOW, S. I., A theory for the age and generation time distribution of a microbial population, J. Math. Biol., 1 (1974), 17-36. Zbl0402.92023MR496810
  29. LINDENSTRAUSS, J.- TZAFRIRI, L., Classical Banach Spaces I, Springer-Verlag, Berlin-Heidelberg-New York, 1977. Zbl0362.46013MR500056
  30. MILMAN, V. D., Some properties of strictly singular operators, Functional Ana. Appl., 3 (1969), 77-78. Zbl0179.17801MR241997
  31. MOKHTAR-KHARROUBI, M., Spectral theory of the neutron transport operator in bounded geometries, Trans. Theor. Stat. Phys., 16 (1987), 467-502. Zbl0629.45011MR906915
  32. MOKHTAR-KHARROUBI, M., Time asymptotic behaviour and compactness in neutron transport theory, Europ. J. of Mech., B Fluid, 11 (1992), 39-68. MR1151539
  33. PALCZEWSKI, A., Spectral properties of the space nonhomogeneous linearized Boltzmann operator, Transp. Theor. Stat. Phys., 13 (1984), 409-430. Zbl0585.47023MR759864
  34. PELCZYNSKI, A., Strictly singular and cosingular operators, Bull. Acad. Polon. Sci., 13 (1965), 31-41. Zbl0138.38604MR177300
  35. ROTENBERG, M., Transport theory for growing cell populations, J. Theor. Biol., 103 (1983), 181-199. MR713945
  36. SCHECHTER, M., Principles of functional analysis, Academic Press, 1971. Zbl0211.14501MR445263
  37. SCHECHTER, M., Spectra of Partial Differential Operators, Horth-Holland, Amsterdam, 1971. Zbl0225.35001MR447834
  38. SCHECHTER, M., On the essential spectrum of an arbitrary operator, J. Math. Anal. Appl., 13 (1965), 205-215. Zbl0147.12101MR188798
  39. VAN DER MEE, C.- ZWEIFEL, P., A. Fokker-Plank equation for growing cell populations, J. Math. Biol., 25 (1987), 61-72. Zbl0644.92019MR886612
  40. VIDAV, I., Existence and uniqueness of nonnegative eigenfunction of the Boltzmann operator, J. Math. Anal. Appl., 22 (1968), 144-155. Zbl0155.19203MR230531
  41. VOIGT, J., Positivity in time dependent transport theory, Acta Aplicandae Mathematicae, 2 (1984), 311-331. Zbl0579.47040MR753698
  42. WEIS, L., On perturbation of Fredholm operators in L p -spaces, Proc. Amer. Math. Soc., 67 (1977), 87-92. Zbl0377.46016MR467377
  43. WOLF, F., On the essential spectrum of partial differential boundary problems, Comm. Pure Appl. Math., 12 (1959), 211-228. Zbl0087.30501MR107750
  44. WOLF, F., On the invariance of the essential spectrum under a change of the boundary conditions of partial differential operators, Indag. Math., 21 (1959), 142-147. Zbl0086.08203MR107751

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.