Time asymptotic description of an abstract Cauchy problem solution and application to transport equation
Boulbeba Abdelmoumen; Omar Jedidi; Aref Jeribi
Applications of Mathematics (2014)
- Volume: 59, Issue: 1, page 53-67
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topAbdelmoumen, Boulbeba, Jedidi, Omar, and Jeribi, Aref. "Time asymptotic description of an abstract Cauchy problem solution and application to transport equation." Applications of Mathematics 59.1 (2014): 53-67. <http://eudml.org/doc/260819>.
@article{Abdelmoumen2014,
abstract = {In this paper, we study the time asymptotic behavior of the solution to an abstract Cauchy problem on Banach spaces without restriction on the initial data. The abstract results are then applied to the study of the time asymptotic behavior of solutions of an one-dimensional transport equation with boundary conditions in $L_1$-space arising in growing cell populations and originally introduced by M. Rotenberg, J. Theoret. Biol. 103 (1983), 181–199.},
author = {Abdelmoumen, Boulbeba, Jedidi, Omar, Jeribi, Aref},
journal = {Applications of Mathematics},
keywords = {evolution equation; semi-group; transport equation; perturbed semigroups; spectral theory; transport equation; perturbed semigroups; spectral theory; evolution equation},
language = {eng},
number = {1},
pages = {53-67},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Time asymptotic description of an abstract Cauchy problem solution and application to transport equation},
url = {http://eudml.org/doc/260819},
volume = {59},
year = {2014},
}
TY - JOUR
AU - Abdelmoumen, Boulbeba
AU - Jedidi, Omar
AU - Jeribi, Aref
TI - Time asymptotic description of an abstract Cauchy problem solution and application to transport equation
JO - Applications of Mathematics
PY - 2014
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 59
IS - 1
SP - 53
EP - 67
AB - In this paper, we study the time asymptotic behavior of the solution to an abstract Cauchy problem on Banach spaces without restriction on the initial data. The abstract results are then applied to the study of the time asymptotic behavior of solutions of an one-dimensional transport equation with boundary conditions in $L_1$-space arising in growing cell populations and originally introduced by M. Rotenberg, J. Theoret. Biol. 103 (1983), 181–199.
LA - eng
KW - evolution equation; semi-group; transport equation; perturbed semigroups; spectral theory; transport equation; perturbed semigroups; spectral theory; evolution equation
UR - http://eudml.org/doc/260819
ER -
References
top- Abdelmoumen, B., Jeribi, A., Mnif, M., 10.1007/s00209-010-0698-1, Math. Z. 268 (2011), 837-869. (2011) Zbl1231.47010MR2818733DOI10.1007/s00209-010-0698-1
- Amar, A. Ben, Jeribi, A., Mnif, M., 10.1007/s10440-009-9430-8, Acta Appl. Math. 110 (2010), 431-448. (2010) MR2601665DOI10.1007/s10440-009-9430-8
- Boulanouar, M., A Rotenberg's model with perfect memory rule, C. R. Acad. Sci., Paris, Sér. I, Math. 327 (1998), 965-968 French. (1998) Zbl0914.92014MR1659158
- Dunford, N., Pettis, B. J., 10.1090/S0002-9947-1940-0002020-4, Trans. Am. Math. Soc. 47 (1940), 323-392. (1940) Zbl0023.32902MR0002020DOI10.1090/S0002-9947-1940-0002020-4
- Dunford, N., Schwartz, J. T., Linear Operators I. General Theory, Pure and Applied Mathematics 6 Interscience Publishers, New York (1958). (1958) Zbl0084.10402MR0117523
- Greenberg, W., Mee, C. van der, Protopopescu, V., Boundary Value Problems in Abstract Kinetic Theory, Operator Theory: Advances and Applications 23 Birkhäuser, Basel (1987). (1987) MR0896904
- Hille, E., Phillips, R. S., Functional Analysis and Semi-Groups. rev. ed, Colloquium Publications 31 American Mathematical Society, Providence (1957); Functional Analysis and Semi-Groups. 3rd printing of rev. ed. of 1957 Colloquium Publications 31 American Mathematical Society, Providence (1974). (1974) MR0089373
- Jeribi, A., A characterization of the essential spectrum and applications, Boll. Unione Mat. Ital., Sez. B, Artic. Ric. Mat. 8 (2002), 805-825. (2002) Zbl1099.47501MR1934382
- Jeribi, A., Time asymptotic behaviour for unbounded linear operators arising in growing cell populations, Nonlinear Anal., Real World Appl. 4 (2003), 667-688. (2003) Zbl1039.92033MR1978556
- Kato, T., Perturbation Theory for Linear Operators. 2nd ed, Grundlehren der mathematischen Wissenschaften 132 Springer, Berlin (1976). (1976) Zbl0342.47009MR0407617
- Lods, B., 10.1002/mma.485, Math. Methods Appl. Sci. 27 (2004), 1049-1075. (2004) Zbl1072.37062MR2063095DOI10.1002/mma.485
- Mokhtar-Kharroubi, M., Time asymptotic behaviour and compactness in transport theory, European J. Mech. B Fluids 11 (1992), 39-68. (1992) MR1151539
- Pazy, A., Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences 44 Springer, New York (1983). (1983) Zbl0516.47023MR0710486
- Rotenberg, M., 10.1016/0022-5193(83)90024-3, J. Theor. Biol. 103 (1983), 181-199. (1983) MR0713945DOI10.1016/0022-5193(83)90024-3
- Smul'yan, Y. L., Completely continuous perturbations of operators, Dokl. Akad. Nauk SSSR (N.S.) 101 (1955), 35-38 Russian; Completely continuous perturbations of operators. Translat. by M. G. Arsove Am. Math. Soc., Transl., II. Ser. 10 (1958), 341-344. (1958) Zbl0080.10603
- Vidav, I., 10.1016/0022-247X(68)90166-2, J. Math. Anal. Appl. 22 (1968), 144-155. (1968) Zbl0155.19203MR0230531DOI10.1016/0022-247X(68)90166-2
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.