Approximate smoothings of locally Lipschitz functionals
Aleksander Ćwiszewski; Wojciech Kryszewski
Bollettino dell'Unione Matematica Italiana (2002)
- Volume: 5-B, Issue: 2, page 289-320
- ISSN: 0392-4041
Access Full Article
topAbstract
topHow to cite
topĆwiszewski, Aleksander, and Kryszewski, Wojciech. "Approximate smoothings of locally Lipschitz functionals." Bollettino dell'Unione Matematica Italiana 5-B.2 (2002): 289-320. <http://eudml.org/doc/196264>.
@article{Ćwiszewski2002,
abstract = {The paper deals with approximation of locally Lipschitz functionals. A concept of approximation, based on the idea of graph approximation of the generalized gradient, is discussed and the existence of such approximations for locally Lipschitz functionals, defined on open domains in $\mathbb\{R\}^\{N\}$, is proved. Subsequently, the procedure of a smooth normal approximation of the class of regular sets (containing e.g. convex and/or epi-Lipschitz sets) is presented.},
author = {Ćwiszewski, Aleksander, Kryszewski, Wojciech},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {6},
number = {2},
pages = {289-320},
publisher = {Unione Matematica Italiana},
title = {Approximate smoothings of locally Lipschitz functionals},
url = {http://eudml.org/doc/196264},
volume = {5-B},
year = {2002},
}
TY - JOUR
AU - Ćwiszewski, Aleksander
AU - Kryszewski, Wojciech
TI - Approximate smoothings of locally Lipschitz functionals
JO - Bollettino dell'Unione Matematica Italiana
DA - 2002/6//
PB - Unione Matematica Italiana
VL - 5-B
IS - 2
SP - 289
EP - 320
AB - The paper deals with approximation of locally Lipschitz functionals. A concept of approximation, based on the idea of graph approximation of the generalized gradient, is discussed and the existence of such approximations for locally Lipschitz functionals, defined on open domains in $\mathbb{R}^{N}$, is proved. Subsequently, the procedure of a smooth normal approximation of the class of regular sets (containing e.g. convex and/or epi-Lipschitz sets) is presented.
LA - eng
UR - http://eudml.org/doc/196264
ER -
References
top- AUBIN, J.-P., Optima and equilibria, Springer-Verlag, Berlin, Heidelberg1993. Zbl0781.90012MR1217485
- AUBIN, J.-P.- EKELAND, I., Applied Nonlinear Analysis, Wiley, New York1986. Zbl0641.47066MR749753
- AUBIN, J.-P.- FRANKOWSKA, H., Set-valued Analysis, Birkhäuser, Boston1991. Zbl0713.49021MR1048347
- BADER, R.- KRYSZEWSKI, W., On the solution sets of differential inclusions and the periodic problem, Set-valued an9, no. 3 (2001), 289-313. Zbl0991.34011MR1863363
- BENOIST, J., Approximation and regularization of arbitrary sets in finite dimension, Set Valued Anal., 2 (1994), 95-115. Zbl0803.49017MR1285823
- BONISEAU, J.-M.- CORNET, B., Fixed point theorem and Morse's lemma for Lipschitzian functions, J. Math. Anal. Appl., 146 (1990), 318-322. Zbl0721.47039MR1043103
- BORWEIN, J. M.- ZHU, Q. J., Multifunctional and functional analytic techniques in nonsmooth analysis, in Nonlinear Analysis, Differential Equations and Control (F. H. Clarke and R. J. Stern, eds.), Kluwer Acad. Publ. (1999), 61-157. Zbl0983.49011MR1695006
- CELLINA, A., Approximation of set-valued functions and fixed point theorems, Ann. Mat. Pura Appl., 82 (1969), 17-24. Zbl0187.07701MR263046
- CLARKE, F. H., Optimization and Nonsmooth Analysis, Wiley, New York1983. Zbl0582.49001MR709590
- CLARKE, F. H.- LEDYAEV, YU. S.- STERN, R. J., Complements, approximations, smoothings and invariance properties, J. Convex Anal., 4 (1997), 189-219. Zbl0905.49010MR1613455
- CORNET, B.- CZARNECKI, M.-O., Représentations lisses de sous-ensemble épi-lipschitziens de , C. R. Acad. Paris Sèr. I, 325 (1997), 475-480. Zbl0893.49012MR1692310
- CORNET, B.- CZARNECKI, M.-O., Smooth normal approximations of epi-Lipschitzian subsets of , to appear in SIAM J. Control Opt. Zbl0945.49014MR1675157
- ĆWISZEWSKI, A.- KRYSZEWSKI, W., Equilibria of Set-Valued Maps: a variational approach, Nonlinear Anal., 48 (2002), 707-746. Zbl1030.49021MR1868111
- ĆWISZEWSKI, A.- KRYSZEWSKI, W., Partial differential equations with discontinuous nonlinearities approximation approach, in preparation.
- EDWARDS, R. E., Functional analysis, Theory and applications, Holt, Rinehart and Winston, New York1965. Zbl0182.16101MR221256
- EVANS, L. C., Partial differential equations, Graduate Studies in Math., Vol. 19, American Math. Soc.1998. Zbl0902.35002
- GÓRNIEWICZ, L., Topological approach to differential inclusions, Topological Methods in Differential Equations and Inclusions, (eds. A. Granas, M. Frigon), NATO ASI Series, Kluwer Acad. Publ.1995, 129-190. Zbl0834.34022MR1368672
- HARTMAN, H., Ordinary differential equations, Birkhäuser, Boston1982. Zbl0476.34002MR658490
- KRYSZEWSKI, W., Graph-approximation of set-valued maps on noncompact domains, Topology and Appl., 83 (1998), 1-21. Zbl0933.54023MR1601626
- KRYSZEWSKI, W., Graph approximation of set-valued maps. A survey, Differential Inclusions and Optimal Control, Lecture Notes in Nonlinear Analysis 2, J. P. Schauder Center for Nonlinear Studies Publ., Toruń1998, 223-235. Zbl1086.54500
- KRYSZEWSKI, W., Homotopy properties of set-valued mappings, The Nicholas Copernicus University, Toruń1997.
- NARASIMHAN, R., Analysis on Complex Manifolds, Masson & Cie (Paris), North Holland, Amsterdam1968. Zbl0188.25803
- PLASKACZ, S., Periodic solutions of differential inclusions on compact subsets of , J. Math. Anal. Appl., 148 (1990), 202-212. Zbl0705.34040MR1052055
- ROCKAFELLAR, R. T., Clarke's tangent cones and boundaries of closed sets in Rn, Nonlinear Anal., 3 (1979), 145-154. Zbl0443.26010MR520481
- SCHWARTZ, J., Nonlinear functional analysis, Gordon & Breach, New York1969. Zbl0203.14501
- WARGA, J., Derivate containers, inverse functions, and controllability, in Calculus of Variations and Control Theory, D. L. Russell, ed., Academic Press, New York1976, 13-46. Zbl0355.26004MR427561
- WARGA, J., Optimal Control of Differential and Functional Equations; Chap. XI (Russian Translation) Nauka, Moscow1978. Zbl0253.49001
- WARGA, J., Fat homeomorphisms and unbounded derivare containers, J. Math. Anal. Appl., 81 (1981), 545-560. Zbl0476.26006MR622836
- WILLEM, M., Minimax Theorems, Birkhäuser, Boston1996. Zbl0856.49001MR1400007
- WHITNEY, H., Analytic extensions of differentiable functions defined in closed sets, Trans. Amer. Math. Soc., 36 (1934), 63-89. Zbl0008.24902MR1501735
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.