Approximate smoothings of locally Lipschitz functionals

Aleksander Ćwiszewski; Wojciech Kryszewski

Bollettino dell'Unione Matematica Italiana (2002)

  • Volume: 5-B, Issue: 2, page 289-320
  • ISSN: 0392-4041

Abstract

top
The paper deals with approximation of locally Lipschitz functionals. A concept of approximation, based on the idea of graph approximation of the generalized gradient, is discussed and the existence of such approximations for locally Lipschitz functionals, defined on open domains in R N , is proved. Subsequently, the procedure of a smooth normal approximation of the class of regular sets (containing e.g. convex and/or epi-Lipschitz sets) is presented.

How to cite

top

Ćwiszewski, Aleksander, and Kryszewski, Wojciech. "Approximate smoothings of locally Lipschitz functionals." Bollettino dell'Unione Matematica Italiana 5-B.2 (2002): 289-320. <http://eudml.org/doc/196264>.

@article{Ćwiszewski2002,
abstract = {The paper deals with approximation of locally Lipschitz functionals. A concept of approximation, based on the idea of graph approximation of the generalized gradient, is discussed and the existence of such approximations for locally Lipschitz functionals, defined on open domains in $\mathbb\{R\}^\{N\}$, is proved. Subsequently, the procedure of a smooth normal approximation of the class of regular sets (containing e.g. convex and/or epi-Lipschitz sets) is presented.},
author = {Ćwiszewski, Aleksander, Kryszewski, Wojciech},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {6},
number = {2},
pages = {289-320},
publisher = {Unione Matematica Italiana},
title = {Approximate smoothings of locally Lipschitz functionals},
url = {http://eudml.org/doc/196264},
volume = {5-B},
year = {2002},
}

TY - JOUR
AU - Ćwiszewski, Aleksander
AU - Kryszewski, Wojciech
TI - Approximate smoothings of locally Lipschitz functionals
JO - Bollettino dell'Unione Matematica Italiana
DA - 2002/6//
PB - Unione Matematica Italiana
VL - 5-B
IS - 2
SP - 289
EP - 320
AB - The paper deals with approximation of locally Lipschitz functionals. A concept of approximation, based on the idea of graph approximation of the generalized gradient, is discussed and the existence of such approximations for locally Lipschitz functionals, defined on open domains in $\mathbb{R}^{N}$, is proved. Subsequently, the procedure of a smooth normal approximation of the class of regular sets (containing e.g. convex and/or epi-Lipschitz sets) is presented.
LA - eng
UR - http://eudml.org/doc/196264
ER -

References

top
  1. AUBIN, J.-P., Optima and equilibria, Springer-Verlag, Berlin, Heidelberg1993. Zbl0781.90012MR1217485
  2. AUBIN, J.-P.- EKELAND, I., Applied Nonlinear Analysis, Wiley, New York1986. Zbl0641.47066MR749753
  3. AUBIN, J.-P.- FRANKOWSKA, H., Set-valued Analysis, Birkhäuser, Boston1991. Zbl0713.49021MR1048347
  4. BADER, R.- KRYSZEWSKI, W., On the solution sets of differential inclusions and the periodic problem, Set-valued an9, no. 3 (2001), 289-313. Zbl0991.34011MR1863363
  5. BENOIST, J., Approximation and regularization of arbitrary sets in finite dimension, Set Valued Anal., 2 (1994), 95-115. Zbl0803.49017MR1285823
  6. BONISEAU, J.-M.- CORNET, B., Fixed point theorem and Morse's lemma for Lipschitzian functions, J. Math. Anal. Appl., 146 (1990), 318-322. Zbl0721.47039MR1043103
  7. BORWEIN, J. M.- ZHU, Q. J., Multifunctional and functional analytic techniques in nonsmooth analysis, in Nonlinear Analysis, Differential Equations and Control (F. H. Clarke and R. J. Stern, eds.), Kluwer Acad. Publ. (1999), 61-157. Zbl0983.49011MR1695006
  8. CELLINA, A., Approximation of set-valued functions and fixed point theorems, Ann. Mat. Pura Appl., 82 (1969), 17-24. Zbl0187.07701MR263046
  9. CLARKE, F. H., Optimization and Nonsmooth Analysis, Wiley, New York1983. Zbl0582.49001MR709590
  10. CLARKE, F. H.- LEDYAEV, YU. S.- STERN, R. J., Complements, approximations, smoothings and invariance properties, J. Convex Anal., 4 (1997), 189-219. Zbl0905.49010MR1613455
  11. CORNET, B.- CZARNECKI, M.-O., Représentations lisses de sous-ensemble épi-lipschitziens de R n , C. R. Acad. Paris Sèr. I, 325 (1997), 475-480. Zbl0893.49012MR1692310
  12. CORNET, B.- CZARNECKI, M.-O., Smooth normal approximations of epi-Lipschitzian subsets of R N , to appear in SIAM J. Control Opt. Zbl0945.49014MR1675157
  13. ĆWISZEWSKI, A.- KRYSZEWSKI, W., Equilibria of Set-Valued Maps: a variational approach, Nonlinear Anal., 48 (2002), 707-746. Zbl1030.49021MR1868111
  14. ĆWISZEWSKI, A.- KRYSZEWSKI, W., Partial differential equations with discontinuous nonlinearities – approximation approach, in preparation. 
  15. EDWARDS, R. E., Functional analysis, Theory and applications, Holt, Rinehart and Winston, New York1965. Zbl0182.16101MR221256
  16. EVANS, L. C., Partial differential equations, Graduate Studies in Math., Vol. 19, American Math. Soc.1998. Zbl0902.35002
  17. GÓRNIEWICZ, L., Topological approach to differential inclusions, Topological Methods in Differential Equations and Inclusions, (eds. A. Granas, M. Frigon), NATO ASI Series, Kluwer Acad. Publ.1995, 129-190. Zbl0834.34022MR1368672
  18. HARTMAN, H., Ordinary differential equations, Birkhäuser, Boston1982. Zbl0476.34002MR658490
  19. KRYSZEWSKI, W., Graph-approximation of set-valued maps on noncompact domains, Topology and Appl., 83 (1998), 1-21. Zbl0933.54023MR1601626
  20. KRYSZEWSKI, W., Graph approximation of set-valued maps. A survey, Differential Inclusions and Optimal Control, Lecture Notes in Nonlinear Analysis 2, J. P. Schauder Center for Nonlinear Studies Publ., Toruń1998, 223-235. Zbl1086.54500
  21. KRYSZEWSKI, W., Homotopy properties of set-valued mappings, The Nicholas Copernicus University, Toruń1997. 
  22. NARASIMHAN, R., Analysis on Complex Manifolds, Masson & Cie (Paris), North Holland, Amsterdam1968. Zbl0188.25803
  23. PLASKACZ, S., Periodic solutions of differential inclusions on compact subsets of R n , J. Math. Anal. Appl., 148 (1990), 202-212. Zbl0705.34040MR1052055
  24. ROCKAFELLAR, R. T., Clarke's tangent cones and boundaries of closed sets in Rn, Nonlinear Anal., 3 (1979), 145-154. Zbl0443.26010MR520481
  25. SCHWARTZ, J., Nonlinear functional analysis, Gordon & Breach, New York1969. Zbl0203.14501
  26. WARGA, J., Derivate containers, inverse functions, and controllability, in Calculus of Variations and Control Theory, D. L. Russell, ed., Academic Press, New York1976, 13-46. Zbl0355.26004MR427561
  27. WARGA, J., Optimal Control of Differential and Functional Equations; Chap. XI (Russian Translation) Nauka, Moscow1978. Zbl0253.49001
  28. WARGA, J., Fat homeomorphisms and unbounded derivare containers, J. Math. Anal. Appl., 81 (1981), 545-560. Zbl0476.26006MR622836
  29. WILLEM, M., Minimax Theorems, Birkhäuser, Boston1996. Zbl0856.49001MR1400007
  30. WHITNEY, H., Analytic extensions of differentiable functions defined in closed sets, Trans. Amer. Math. Soc., 36 (1934), 63-89. Zbl0008.24902MR1501735

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.