The category of cofinite modules for ideals of dimension one and codimension one

Ken-ichiroh Kawasaki[1]

  • [1] Department of Mathematics, Nara University of Education, Takabatake-cho, Nara, 630-8528, Japan

Actes des rencontres du CIRM (2010)

  • Volume: 2, Issue: 2, page 123-126
  • ISSN: 2105-0597

How to cite

top

Kawasaki, Ken-ichiroh. "The category of cofinite modules for ideals of dimension one and codimension one." Actes des rencontres du CIRM 2.2 (2010): 123-126. <http://eudml.org/doc/196281>.

@article{Kawasaki2010,
affiliation = {Department of Mathematics, Nara University of Education, Takabatake-cho, Nara, 630-8528, Japan},
author = {Kawasaki, Ken-ichiroh},
journal = {Actes des rencontres du CIRM},
keywords = {Abelian category; Derived category; Cofinite complex; Cofinite module},
language = {eng},
number = {2},
pages = {123-126},
publisher = {CIRM},
title = {The category of cofinite modules for ideals of dimension one and codimension one},
url = {http://eudml.org/doc/196281},
volume = {2},
year = {2010},
}

TY - JOUR
AU - Kawasaki, Ken-ichiroh
TI - The category of cofinite modules for ideals of dimension one and codimension one
JO - Actes des rencontres du CIRM
PY - 2010
PB - CIRM
VL - 2
IS - 2
SP - 123
EP - 126
LA - eng
KW - Abelian category; Derived category; Cofinite complex; Cofinite module
UR - http://eudml.org/doc/196281
ER -

References

top
  1. K. Eto and K. -i. Kawasaki, A characterization of cofinite complexes over complete Gorenstein domains, to appear in Journal of Commutative Algebra. Zbl1252.13010
  2. D. Delfino and T. Marley, Cofinite modules and local cohomology, Journal Pure and Applied Algebra, 121 (1997), 45–52. Zbl0893.13005MR1471123
  3. A. Grothendieck, Local Cohomology, noted by R. Hartshorne, Springer Lecture note in Mathematics, No. 41, Springer-Verlag, Berlin, Heidelberg, New York, (1967). Zbl0185.49202MR224620
  4. A. Grothendieck, Cohomologie locale des faisceaux cohérants et théorèmes de Lefschetz locaux et globaux (SGA 2), North-Holland, Amsterdam, (1968). Zbl0197.47202MR476737
  5. R. Hartshorne, Affine duality and cofiniteness, Inventiones Mathematicae, 9 (1970), 145–164. Zbl0196.24301MR257096
  6. R. Hartshorne, Algebraic Geometry, Graduate Texts in Mathematics, 52, Springer-Verlag, New York Berlin Heidelberg, (1977). Zbl0367.14001MR463157
  7. R. Hartshorne, Residue and Duality, Springer Lecture note in Mathematics, No. 20, Springer-Verlag, New York, Berlin, Heidelberg, (1966). Zbl0212.26101MR222093
  8. C. Huneke and J. Koh, Cofiniteness and vanishing of local cohomology modules, Mathematical Proceedings of the Cambridge Philosophical Society, 110 No. 3 (1991), 421–429. Zbl0749.13007MR1120477
  9. K. -i. Kawasaki, On a category of cofinite modules for principal ideals, preprint. Zbl1247.14003
  10. K. -i. Kawasaki, On finiteness properties of local cohomology modules over Cohen-Macaulay local rings, Illinois Journal of Mathematics, 52 No 3 (2008), 727–744. Zbl1174.13025MR2546004
  11. K. -i. Kawasaki, On a category of cofinite modules which is Abelian, Mathematische Zeitschrift, 269 Issue 1 (2011), 587-608. Zbl1228.13020
  12. J. Lipman, Lectures on Local cohomology and duality, Local cohomology and its applications, Lecture notes in pure and applied mathematics, Vol. 226, Marcel Dekker, Inc., New York · Basel, (2002), 39–89. Zbl1011.13010MR1888195
  13. E. Matlis, Injective Modules over noetherian rings, Pacific Journal of Mathematics, 8 (1958), 511–528. Zbl0084.26601MR99360
  14. L. Melkersson, Modules cofinite with respect to an ideal, Journal of Algebra, 285 (2005), 649–668. Zbl1093.13012MR2125457

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.