Newton and Schinzel sequences in quadratic fields
David Adam[1]; Paul-Jean Cahen[2]
- [1] GAATI, Université de Polynésie Française, BP 6570, 98702 Faa’a, Tahiti, Polynésie Française
- [2] LATP, CNRS UMR 6632, Faculté des Sciences et Techniques, Université d’Aix-Marseille III, 13397 Marseille Cedex 20, France
Actes des rencontres du CIRM (2010)
- Volume: 2, Issue: 2, page 15-20
- ISSN: 2105-0597
Access Full Article
topAbstract
topHow to cite
topAdam, David, and Cahen, Paul-Jean. "Newton and Schinzel sequences in quadratic fields." Actes des rencontres du CIRM 2.2 (2010): 15-20. <http://eudml.org/doc/196284>.
@article{Adam2010,
abstract = {We give the maximal length of a Newton or a Schinzel sequence in a quadratic extension of a global field. In the case of a number field, the maximal length of a Schinzel sequence is 1, except in seven particular cases, and the Newton sequences are also finite, except for at most finitely many cases, all real. We give the maximal length of these sequences in the special cases. We have similar results in the case of a quadratic extension of a function field $\mathbb\{F\}_q(T)$, taking in account that the ring of integers may be isomorphic to $\mathbb\{F\}_q[T]$, in which case there are obviously infinite Newton and Schinzel sequences.},
affiliation = {GAATI, Université de Polynésie Française, BP 6570, 98702 Faa’a, Tahiti, Polynésie Française; LATP, CNRS UMR 6632, Faculté des Sciences et Techniques, Université d’Aix-Marseille III, 13397 Marseille Cedex 20, France},
author = {Adam, David, Cahen, Paul-Jean},
journal = {Actes des rencontres du CIRM},
keywords = {Integer-valued polynomials; Newton and Schinzel sequences; Quadratic number and function fields},
language = {eng},
number = {2},
pages = {15-20},
publisher = {CIRM},
title = {Newton and Schinzel sequences in quadratic fields},
url = {http://eudml.org/doc/196284},
volume = {2},
year = {2010},
}
TY - JOUR
AU - Adam, David
AU - Cahen, Paul-Jean
TI - Newton and Schinzel sequences in quadratic fields
JO - Actes des rencontres du CIRM
PY - 2010
PB - CIRM
VL - 2
IS - 2
SP - 15
EP - 20
AB - We give the maximal length of a Newton or a Schinzel sequence in a quadratic extension of a global field. In the case of a number field, the maximal length of a Schinzel sequence is 1, except in seven particular cases, and the Newton sequences are also finite, except for at most finitely many cases, all real. We give the maximal length of these sequences in the special cases. We have similar results in the case of a quadratic extension of a function field $\mathbb{F}_q(T)$, taking in account that the ring of integers may be isomorphic to $\mathbb{F}_q[T]$, in which case there are obviously infinite Newton and Schinzel sequences.
LA - eng
KW - Integer-valued polynomials; Newton and Schinzel sequences; Quadratic number and function fields
UR - http://eudml.org/doc/196284
ER -
References
top- D. Adam, Simultaneous orderings in function fields, J. Number Theory112 (2005), 287–297. Zbl1075.11075MR2141533
- —, Pólya and Newtonian function fields, Manuscripta Math.126 (2008), no. 2, 231–246. Zbl1141.11057MR2403187
- Y. Amice, Interpolation -adique, Bull. Soc. Math. France92 (1964), 117–180. Zbl0158.30201MR188199
- M. Bhargava, -orderings and polynomial functions on arbitrary subsets of Dedekind rings, J. Reine Angew. Math.490 (1997), 101–127. Zbl0899.13022MR1468927
- —, The factorial function and generalizations, Amer. Math. Monthly107 (2000), 783–799. Zbl0987.05003MR1792411
- P.J. Cahen, Newtonian and Schinzel sequences in a domain, J. of Pure and Appl. Algebra213 (2009), 2117–2133. Zbl1170.13007MR2533310
- P.J. Cahen, J.L. Chabert, Integer valued polynomials, Mathematical Survey and Monographs,vol 48, American Mathematical Society, Providence, (1997) Zbl0884.13010MR1421321
- —, Old Problems and New Questions around Integer-Valued Polynomials and Factorial Sequences, Multiplicative ideal theory in commutative algebra, Springer, New York, (2006), 89–108. MR2265803
- M. Car, Répartition modulo dans un corps de séries formelles sur un corps fini, Acta Arith.69.3 (1995), 229–242. Zbl0819.11026MR1316477
- A. Granville, R.A. Mollin, H.C. Williams, An upper bound on the least inert prime in a real quadratic field, Canad. J. Math.52.2 (2000), 369–380. Zbl1053.11092MR1755783
- J. Latham, On sequences of algebraic integers, J. London Math. Soc.6.2 (1973), 555–560. Zbl0259.12004MR314793
- PARI/GP, version 2.3.4, Bordeaux, 2008, http://pari.math.u-bordeaux.fr.
- W. Narkiewicz, Some unsolved problems, Colloque de Théorie des Nombres (Univ. Bordeaux, Bordeaux, 1969), Bull. Soc. Math. France, Mem.25 (1971), 12–02. MR466060
- B. Wantula, Browkin’s problem for quadratic fields. (Polish) Zeszyty Nauk. Politech. Ślpolhk ask. Mat.-Fiz.24 (1974), 173–178. Zbl0346.12001MR369314
- R. Wasen, On sequences of algebraic integers in pure extensions of prime degree, Colloq. Math.30 (1974), 89–104. Zbl0254.12002MR349622
- M. Wood, -orderings: a metric viewpoint and the non-existence of simultaneous orderings, J. Number Theory 99 (2003), 36–56. Zbl1076.13011MR1957243
- J. Yéramian, Anneaux de Bhargava, Comm. Algebra32.8, (2004), 3043–3069. Zbl1061.13011MR2102166
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.