Pólya fields and Pólya numbers
- [1] LAMFA, CNRS UMR 6140 Université de Picardie Jules Verne 33, rue Saint-Leu 80039 Amiens & École Centrale de Lille Cité Scientifique 59650 Villeneuve d’Ascq France
Actes des rencontres du CIRM (2010)
- Volume: 2, Issue: 2, page 21-26
- ISSN: 2105-0597
Access Full Article
topAbstract
topHow to cite
topLeriche, Amandine. "Pólya fields and Pólya numbers." Actes des rencontres du CIRM 2.2 (2010): 21-26. <http://eudml.org/doc/196292>.
@article{Leriche2010,
abstract = {A number field $K$, with ring of integers $\mathcal\{O\}_K$, is said to be a Pólya field if the $\mathcal\{O\}_K$-algebra formed by the integer-valued polynomials on $\mathcal\{O\}_K$ admits a regular basis. In a first part, we focus on fields with degree less than six which are Pólya fields. It is known that a field $K$ is a Pólya field if certain characteristic ideals are principal. Analogously to the classical embedding problem, we consider the embedding of $K$ in a Pólya field. We give a positive answer to this embedding problem by showing that the Hilbert class field $H_K$ of $K$ is a Pólya field. Finally, we give upper bounds for the minimal degree $po_K$ of a Pólya field containing $K$, namely the Pólya number of $K$.},
affiliation = {LAMFA, CNRS UMR 6140 Université de Picardie Jules Verne 33, rue Saint-Leu 80039 Amiens & École Centrale de Lille Cité Scientifique 59650 Villeneuve d’Ascq France},
author = {Leriche, Amandine},
journal = {Actes des rencontres du CIRM},
keywords = {Pólya fields; Hilbert class field; genus field; integer-valued polynomials; Pólya field; integral-valued polynomials; regular basis; Pólya extension},
language = {eng},
number = {2},
pages = {21-26},
publisher = {CIRM},
title = {Pólya fields and Pólya numbers},
url = {http://eudml.org/doc/196292},
volume = {2},
year = {2010},
}
TY - JOUR
AU - Leriche, Amandine
TI - Pólya fields and Pólya numbers
JO - Actes des rencontres du CIRM
PY - 2010
PB - CIRM
VL - 2
IS - 2
SP - 21
EP - 26
AB - A number field $K$, with ring of integers $\mathcal{O}_K$, is said to be a Pólya field if the $\mathcal{O}_K$-algebra formed by the integer-valued polynomials on $\mathcal{O}_K$ admits a regular basis. In a first part, we focus on fields with degree less than six which are Pólya fields. It is known that a field $K$ is a Pólya field if certain characteristic ideals are principal. Analogously to the classical embedding problem, we consider the embedding of $K$ in a Pólya field. We give a positive answer to this embedding problem by showing that the Hilbert class field $H_K$ of $K$ is a Pólya field. Finally, we give upper bounds for the minimal degree $po_K$ of a Pólya field containing $K$, namely the Pólya number of $K$.
LA - eng
KW - Pólya fields; Hilbert class field; genus field; integer-valued polynomials; Pólya field; integral-valued polynomials; regular basis; Pólya extension
UR - http://eudml.org/doc/196292
ER -
References
top- P.J. Cahen, J.L. Chabert, Integer-valued polynomials, Mathematical Surveys and Monographs, vol 48, Amer. Math. Soc., Providence (1997). Zbl0884.13010MR1421321
- J.L Chabert, Factorial Groups and Pólya groups in Galoisian Extension of , Proceedings of the fourth international conference on commutative ring theory and applications (2002), 77-86. Zbl1107.13303MR2029819
- H. Cohen, A Course in Computational Algebraic Number Theory, Springer, 2000. Zbl0786.11071MR1228206
- H. Furuya, Principal ideal theorem in the genus field for absolutely abelian extensions, J. Number Theory9 (1977), 4-15. Zbl0347.12006MR429820
- G. Gras, Class Field Theory, Springer, 2005. Zbl1019.11032MR1941965
- K. Hardy, R.H. Hudson, D. Richman, K.S. Williams and N.M. Holtz, Calculation of Class Numbers of Imaginary Cyclic Quartic Fields, Carleton-Ottawa Mathematical Lecture Note Series7 (1986), 201 pp. Zbl0615.12009MR906194
- D. Hilbert, Die Theorie der algebraischen Zahlkörper, Jahresbericht der Deutschen Mathematiker-Vereinigung 4 (1894-95), 175-546.
- E.S. Golod, I.R. Shafarevich, On the class field tower, Izv. Akad. Nauk28 (1964), 261-272. Zbl0136.02602MR161852
- A. Leriche, Groupes, Corps et Extensions de Pólya : une question de capitulation, PhD thesis, Université de Picardie Jules Verne (Décembre 2010).
- A. Leriche, Pólya fields, Pólya groups and Pólya extensions: a question of capitulation, Journal de Théorie des Nombres de Bordeaux, 23, (2011), 235-249. Zbl1282.13040MR2780627
- A. Ostrowski, Über ganzwertige Polynome in algebraischen Zahlkörpren, J. Reine Angew. Math.149 (1919), 117-124. Zbl47.0163.05
- G. Pólya, Über ganzwertige Polynome in algebraischen Zahlkörpern, J. Reine Angew. Math.149 (1919), 97-116. Zbl47.0163.04
- K.S. Williams, Integers of biquadratic fields, Canad. Math. Bull.13 (1970), 519-526. Zbl0205.35401MR279069
- H. Zantema, Integer valued polynomials over a number field, Manusc. Math.40 (1982), 155-203. Zbl0505.12003MR683038
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.