Displaying similar documents to “Pólya fields and Pólya numbers”

Pólya fields, Pólya groups and Pólya extensions: a question of capitulation

Amandine Leriche (2011)

Journal de Théorie des Nombres de Bordeaux

Similarity:

A number field K , with ring of integers 𝒪 K , is said to be a Pólya field when the 𝒪 K -algebra formed by the integer-valued polynomials on 𝒪 K admits a regular basis. It is known that such fields are characterized by the fact that some characteristic ideals are principal. Analogously to the classical embedding problem in a number field with class number one, when K is not a Pólya field, we are interested in the embedding of K in a Pólya field. We study here two notions which can be considered...

On 2 -class field towers of imaginary quadratic number fields

Franz Lemmermeyer (1994)

Journal de théorie des nombres de Bordeaux

Similarity:

For a number field k , let k 1 denote its Hilbert 2 -class field, and put k 2 = ( k 1 ) 1 . We will determine all imaginary quadratic number fields k such that G = G a l ( k 2 / k ) is abelian or metacyclic, and we will give G in terms of generators and relations.

Maximal unramified extensions of imaginary quadratic number fields of small conductors, II

Ken Yamamura (2001)

Journal de théorie des nombres de Bordeaux

Similarity:

In the previous paper [15], we determined the structure of the Galois groups Gal ( K u r / K ) of the maximal unramified extensions K u r of imaginary quadratic number fields K of conductors 1000 under the Generalized Riemann Hypothesis (GRH) except for 23 fields (these are of conductors 723 ) and give a table of Gal ( K u r / K ) . We update the table (under GRH). For 19 exceptional fields K of them, we determine Gal ( K u r / K ) . In particular, for K = 𝐐 ( - 856 ) , we obtain Gal ( K u r / K ) S 4 ˜ × C 5 and K u r = K 4 , the fourth Hilbert class field of K . This is the first example of a number...

Maximal unramified extensions of imaginary quadratic number fields of small conductors

Ken Yamamura (1997)

Journal de théorie des nombres de Bordeaux

Similarity:

We determine the structures of the Galois groups Gal ( K u r / K ) of the maximal unramified extensions K u r of imaginary quadratic number fields K of conductors 420 ( 719 under the Generalized Riemann Hypothesis). For all such K , K u r is K , the Hilbert class field of K , the second Hilbert class field of K , or the third Hilbert class field of K . The use of Odlyzko’s discriminant bounds and information on the structure of class groups obtained by using the action of Galois groups on class groups is essential. We...

The class number one problem for some non-abelian normal CM-fields of degree 24

F. Lemmermeyer, S. Louboutin, R. Okazaki (1999)

Journal de théorie des nombres de Bordeaux

Similarity:

We determine all the non-abelian normal CM-fields of degree 24 with class number one, provided that the Galois group of their maximal real subfields is isomorphic to 𝒜 4 , the alternating group of degree 4 and order 12 . There are two such fields with Galois group 𝒜 4 × 𝒞 2 (see Theorem 14) and at most one with Galois group SL 2 ( 𝔽 3 ) (see Theorem 18); if the generalized Riemann hypothesis is true, then this last field has class number 1 .

On D 5 -polynomials with integer coefficients

Yasuhiro Kishi (2009)

Annales mathématiques Blaise Pascal

Similarity:

We give a family of D 5 -polynomials with integer coefficients whose splitting fields over are unramified cyclic quintic extensions of quadratic fields. Our polynomials are constructed by using Fibonacci, Lucas numbers and units of certain cyclic quartic fields.