On the Argmin-sets of stochastic processes and their distributional convergence in Fell-type-topologies

Dietmar Ferger

Kybernetika (2011)

  • Volume: 47, Issue: 6, page 955-968
  • ISSN: 0023-5954

Abstract

top
Let ϵ - ( Z ) be the collection of all ϵ -optimal solutions for a stochastic process Z with locally bounded trajectories defined on a topological space. For sequences ( Z n ) of such stochastic processes and ( ϵ n ) of nonnegative random variables we give sufficient conditions for the (closed) random sets ϵ n - ( Z n ) to converge in distribution with respect to the Fell-topology and to the coarser Missing-topology.

How to cite

top

Ferger, Dietmar. "On the Argmin-sets of stochastic processes and their distributional convergence in Fell-type-topologies." Kybernetika 47.6 (2011): 955-968. <http://eudml.org/doc/196322>.

@article{Ferger2011,
abstract = {Let $\epsilon -\text\{(\}Z)$ be the collection of all $\epsilon $-optimal solutions for a stochastic process $Z$ with locally bounded trajectories defined on a topological space. For sequences $(Z_n)$ of such stochastic processes and $(\epsilon _n)$ of nonnegative random variables we give sufficient conditions for the (closed) random sets $\epsilon _n-\text\{(\}Z_n)$ to converge in distribution with respect to the Fell-topology and to the coarser Missing-topology.},
author = {Ferger, Dietmar},
journal = {Kybernetika},
keywords = {$\epsilon $-argmin of stochastic process; random closed sets; weak convergence of Hoffmann–Jørgensen; Fell-topology; Missing-topology; argmin of stochastic process; random closed sets; weak convergence of Hoffmann-Jørgensen; Fell-topology; missing-topology},
language = {eng},
number = {6},
pages = {955-968},
publisher = {Institute of Information Theory and Automation AS CR},
title = {On the Argmin-sets of stochastic processes and their distributional convergence in Fell-type-topologies},
url = {http://eudml.org/doc/196322},
volume = {47},
year = {2011},
}

TY - JOUR
AU - Ferger, Dietmar
TI - On the Argmin-sets of stochastic processes and their distributional convergence in Fell-type-topologies
JO - Kybernetika
PY - 2011
PB - Institute of Information Theory and Automation AS CR
VL - 47
IS - 6
SP - 955
EP - 968
AB - Let $\epsilon -\text{(}Z)$ be the collection of all $\epsilon $-optimal solutions for a stochastic process $Z$ with locally bounded trajectories defined on a topological space. For sequences $(Z_n)$ of such stochastic processes and $(\epsilon _n)$ of nonnegative random variables we give sufficient conditions for the (closed) random sets $\epsilon _n-\text{(}Z_n)$ to converge in distribution with respect to the Fell-topology and to the coarser Missing-topology.
LA - eng
KW - $\epsilon $-argmin of stochastic process; random closed sets; weak convergence of Hoffmann–Jørgensen; Fell-topology; Missing-topology; argmin of stochastic process; random closed sets; weak convergence of Hoffmann-Jørgensen; Fell-topology; missing-topology
UR - http://eudml.org/doc/196322
ER -

References

top
  1. Billingsley, P., Convergence of Probability Measures, John Wiley & Sons, New York 1968. (1968) Zbl0172.21201MR0233396
  2. Ferger, D., 10.1046/j.0039-0402.2003.00111.x, Statist. Neerlandica 58 (2004), 83–96. (2004) Zbl1090.60032MR2042258DOI10.1046/j.0039-0402.2003.00111.x
  3. Gänssler, P., Stute, W., Wahrscheinlichkeitstheorie, Springer–Verlag, Berlin – Heidelberg 1977. (1977) MR0501219
  4. Gersch, O., Convergence in Distribution of Random Closed Sets and Applications in Stability Theory and Stochastic Optimization, PhD Thesis. Technische Universität Ilmenau 2007. (2007) 
  5. Kallenberg, O., Foundations of Modern Probability, Springer–Verlag, New York 1997. (1997) Zbl0892.60001MR1464694
  6. Lagodowski, A., Rychlik, Z., Weak convergence of probability measures on the function space D d [ 0 , ) , Bull. Polish Acad. Sci. Math. 34 (1986), 329–335. (1986) MR0874876
  7. Lindvall, T., 10.2307/3212499, J. Appl. Probab. 10 (1973), 109–121. (1973) Zbl0258.60008MR0362429DOI10.2307/3212499
  8. Norberg, T., 10.1214/aop/1176993223, Ann. Probab. 12 (1984), 726–732. (1984) Zbl0545.60021MR0744229DOI10.1214/aop/1176993223
  9. Pflug, G. Ch., Asymptotic dominance and confidence for solutions of stochastic programs, Czechoslovak J. Oper. Res. 1 (1992), 21–30. (1992) Zbl1015.90511
  10. Pflug, G. Ch., 10.1287/moor.20.4.769, Math. Oper. Res. 20 (1995), 769–789. (1995) MR1378105DOI10.1287/moor.20.4.769
  11. Rockafellar, R. T., Wets, R. J.-B., Variational Analysis, Springer–Verlag, Berlin – Heidelberg 1998. (1998) Zbl0888.49001MR1491362
  12. Royden, H. L., Real Analysis, Third edition Macmillan Publishing Company, New York 1988. (1988) Zbl0704.26006MR1013117
  13. Salinetti, G., Wets, R. J.-B., 10.1287/moor.11.3.385, Math. Oper. Res. 11 (1986), 385–419. (1986) Zbl0611.60004MR0852332DOI10.1287/moor.11.3.385
  14. Vaart, A. W. van der, Wellner, J. A., Weak Convergence and Empirical Processes, Springer–Verlag, New York 1996. (1996) MR1385671
  15. Vogel, S., 10.1524/stnd.2005.23.3.219, Statist. Decisions 23 (2005), 219–248. (2005) Zbl1093.62032MR2236458DOI10.1524/stnd.2005.23.3.219
  16. Vogel, S., 10.1007/s10479-006-6172-0, Ann. Oper. Res. 142 (2006), 269–282. (2006) MR2222921DOI10.1007/s10479-006-6172-0

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.