On the Argmin-sets of stochastic processes and their distributional convergence in Fell-type-topologies
Kybernetika (2011)
- Volume: 47, Issue: 6, page 955-968
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topFerger, Dietmar. "On the Argmin-sets of stochastic processes and their distributional convergence in Fell-type-topologies." Kybernetika 47.6 (2011): 955-968. <http://eudml.org/doc/196322>.
@article{Ferger2011,
abstract = {Let $\epsilon -\text\{(\}Z)$ be the collection of all $\epsilon $-optimal solutions for a stochastic process $Z$ with locally bounded trajectories defined on a topological space. For sequences $(Z_n)$ of such stochastic processes and $(\epsilon _n)$ of nonnegative random variables we give sufficient conditions for the (closed) random sets $\epsilon _n-\text\{(\}Z_n)$ to converge in distribution with respect to the Fell-topology and to the coarser Missing-topology.},
author = {Ferger, Dietmar},
journal = {Kybernetika},
keywords = {$\epsilon $-argmin of stochastic process; random closed sets; weak convergence of Hoffmann–Jørgensen; Fell-topology; Missing-topology; argmin of stochastic process; random closed sets; weak convergence of Hoffmann-Jørgensen; Fell-topology; missing-topology},
language = {eng},
number = {6},
pages = {955-968},
publisher = {Institute of Information Theory and Automation AS CR},
title = {On the Argmin-sets of stochastic processes and their distributional convergence in Fell-type-topologies},
url = {http://eudml.org/doc/196322},
volume = {47},
year = {2011},
}
TY - JOUR
AU - Ferger, Dietmar
TI - On the Argmin-sets of stochastic processes and their distributional convergence in Fell-type-topologies
JO - Kybernetika
PY - 2011
PB - Institute of Information Theory and Automation AS CR
VL - 47
IS - 6
SP - 955
EP - 968
AB - Let $\epsilon -\text{(}Z)$ be the collection of all $\epsilon $-optimal solutions for a stochastic process $Z$ with locally bounded trajectories defined on a topological space. For sequences $(Z_n)$ of such stochastic processes and $(\epsilon _n)$ of nonnegative random variables we give sufficient conditions for the (closed) random sets $\epsilon _n-\text{(}Z_n)$ to converge in distribution with respect to the Fell-topology and to the coarser Missing-topology.
LA - eng
KW - $\epsilon $-argmin of stochastic process; random closed sets; weak convergence of Hoffmann–Jørgensen; Fell-topology; Missing-topology; argmin of stochastic process; random closed sets; weak convergence of Hoffmann-Jørgensen; Fell-topology; missing-topology
UR - http://eudml.org/doc/196322
ER -
References
top- Billingsley, P., Convergence of Probability Measures, John Wiley & Sons, New York 1968. (1968) Zbl0172.21201MR0233396
- Ferger, D., 10.1046/j.0039-0402.2003.00111.x, Statist. Neerlandica 58 (2004), 83–96. (2004) Zbl1090.60032MR2042258DOI10.1046/j.0039-0402.2003.00111.x
- Gänssler, P., Stute, W., Wahrscheinlichkeitstheorie, Springer–Verlag, Berlin – Heidelberg 1977. (1977) MR0501219
- Gersch, O., Convergence in Distribution of Random Closed Sets and Applications in Stability Theory and Stochastic Optimization, PhD Thesis. Technische Universität Ilmenau 2007. (2007)
- Kallenberg, O., Foundations of Modern Probability, Springer–Verlag, New York 1997. (1997) Zbl0892.60001MR1464694
- Lagodowski, A., Rychlik, Z., Weak convergence of probability measures on the function space , Bull. Polish Acad. Sci. Math. 34 (1986), 329–335. (1986) MR0874876
- Lindvall, T., 10.2307/3212499, J. Appl. Probab. 10 (1973), 109–121. (1973) Zbl0258.60008MR0362429DOI10.2307/3212499
- Norberg, T., 10.1214/aop/1176993223, Ann. Probab. 12 (1984), 726–732. (1984) Zbl0545.60021MR0744229DOI10.1214/aop/1176993223
- Pflug, G. Ch., Asymptotic dominance and confidence for solutions of stochastic programs, Czechoslovak J. Oper. Res. 1 (1992), 21–30. (1992) Zbl1015.90511
- Pflug, G. Ch., 10.1287/moor.20.4.769, Math. Oper. Res. 20 (1995), 769–789. (1995) MR1378105DOI10.1287/moor.20.4.769
- Rockafellar, R. T., Wets, R. J.-B., Variational Analysis, Springer–Verlag, Berlin – Heidelberg 1998. (1998) Zbl0888.49001MR1491362
- Royden, H. L., Real Analysis, Third edition Macmillan Publishing Company, New York 1988. (1988) Zbl0704.26006MR1013117
- Salinetti, G., Wets, R. J.-B., 10.1287/moor.11.3.385, Math. Oper. Res. 11 (1986), 385–419. (1986) Zbl0611.60004MR0852332DOI10.1287/moor.11.3.385
- Vaart, A. W. van der, Wellner, J. A., Weak Convergence and Empirical Processes, Springer–Verlag, New York 1996. (1996) MR1385671
- Vogel, S., 10.1524/stnd.2005.23.3.219, Statist. Decisions 23 (2005), 219–248. (2005) Zbl1093.62032MR2236458DOI10.1524/stnd.2005.23.3.219
- Vogel, S., 10.1007/s10479-006-6172-0, Ann. Oper. Res. 142 (2006), 269–282. (2006) MR2222921DOI10.1007/s10479-006-6172-0
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.