Interval valued bimatrix games
Kybernetika (2010)
- Volume: 46, Issue: 3, page 435-446
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topHladík, Milan. "Interval valued bimatrix games." Kybernetika 46.3 (2010): 435-446. <http://eudml.org/doc/196348>.
@article{Hladík2010,
abstract = {Payoffs in (bimatrix) games are usually not known precisely, but it is often possible to determine lower and upper bounds on payoffs. Such interval valued bimatrix games are considered in this paper. There are many questions arising in this context. First, we discuss the problem of existence of an equilibrium being common for all instances of interval values. We show that this property is equivalent to solvability of a certain linear mixed integer system of equations and inequalities. Second, we characterize the set of all possible equilibria by mean of a linear mixed integer system.},
author = {Hladík, Milan},
journal = {Kybernetika},
keywords = {bimatrix game; interval matrix; interval analysis; bimatrix game; interval matrix},
language = {eng},
number = {3},
pages = {435-446},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Interval valued bimatrix games},
url = {http://eudml.org/doc/196348},
volume = {46},
year = {2010},
}
TY - JOUR
AU - Hladík, Milan
TI - Interval valued bimatrix games
JO - Kybernetika
PY - 2010
PB - Institute of Information Theory and Automation AS CR
VL - 46
IS - 3
SP - 435
EP - 446
AB - Payoffs in (bimatrix) games are usually not known precisely, but it is often possible to determine lower and upper bounds on payoffs. Such interval valued bimatrix games are considered in this paper. There are many questions arising in this context. First, we discuss the problem of existence of an equilibrium being common for all instances of interval values. We show that this property is equivalent to solvability of a certain linear mixed integer system of equations and inequalities. Second, we characterize the set of all possible equilibria by mean of a linear mixed integer system.
LA - eng
KW - bimatrix game; interval matrix; interval analysis; bimatrix game; interval matrix
UR - http://eudml.org/doc/196348
ER -
References
top- Alparslan-Gök, S. Z., Branzei, R., Tijs, S. H., Cores and stable sets for interval-valued games, Discussion Paper 2008-17, Tilburg University, Center for Economic Research, 2008.
- Alparslan-Gök, S. Z., Miquel, S., Tijs, S. H., 10.1007/s00186-008-0211-3, Math. Meth. Oper. Res. 69 (2009), 1, 99–109. MR2476050DOI10.1007/s00186-008-0211-3
- Audet, C., Belhaiza, S., Hansen, P., 10.1007/s10957-006-9070-3, J. Optim. Theory Appl. 129 (2006), 3, 349–372. Zbl1122.91009MR2281145DOI10.1007/s10957-006-9070-3
- Collins, W. D., Hu, C., Fuzzily determined interval matrix games, In: Proc. BISCSE’05, University of California, Berkeley 2005.
- Collins, W. D., Hu, C., Interval matrix games, In: Knowledge Processing with Interval and Soft Computing (C. Hu et al., eds.), Chapter 7, Springer, London 2008, pp. 1–19.
- Collins, W. D., Hu, C., 10.1007/s00500-007-0207-6, Soft Comput. 12 (2008), 2, 147–155. Zbl1152.91312DOI10.1007/s00500-007-0207-6
- Levin, V. I., 10.1007/BF02835860, Cybern. Syst. Anal. 35 (1999), 4, 644–652. Zbl0964.91005MR1729000DOI10.1007/BF02835860
- Liu, S.-T., Kao, C., 10.1016/j.cie.2008.06.002, Computers & Industrial Engineering 56 (2009), 4, 1697–1700. DOI10.1016/j.cie.2008.06.002
- Nash, J. F., 10.1073/pnas.36.1.48, Proc. Natl. Acad. Sci. USA 36 (1950), 48–49. Zbl0036.01104MR0031701DOI10.1073/pnas.36.1.48
- Rohn, J., Solvability of systems of interval linear equations and inequalities, In: Linear Optimization Problems with Inexact Data (M. Fiedler et al., eds.), Chapter 2, Springer, New York 2006, pp. .35–77.
- Shashikhin, V., 10.1023/B:CASA.0000047877.10921.d0, Cybern. Syst. Anal. 40 (2004), 4, 556–564. Zbl1132.91329MR2136247DOI10.1023/B:CASA.0000047877.10921.d0
- Thomas, L. C., Games, Theory and Applications, Reprint of the 1986 edition. Dover Publications, Mineola, NY 2003. Zbl1140.91023MR2025526
- Neumann, J. von, Morgenstern, O., Theory of Games and Economic Behavior, With an Introduction by Harold Kuhn and an Afterword by Ariel Rubinstein. Princeton University Press, Princeton, NJ 2007. MR2316805
- Stengel, B. von, Computing equilibria for two-person games, In: Handbook of Game Theory with Economic Applications (R. J. Aumann and S. Hart, eds.), Volume 3, Chapter 45, Elsevier, Amsterdam 2002, pp. 1723–1759.
- Yager, R. R., Kreinovich, V., 10.1142/S0218488500000423, Internat. J. Uncertain. Fuzziness Knowledge-Based Systems 8 (2000), 5, 611–618. Zbl1113.68542MR1784650DOI10.1142/S0218488500000423
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.