A controller and a stopper game with degenerate variance control.
Se establece una caracterización de la función de valor de los juegos estocásticos continuos, similar a la contenida en [2] y [3] para juegos matriciales y en [4] para juegos estocásticos discretos. Tras la formulación del problema se señalan algunas propiedades de la función de valor. Más adelante se prueba que tales propiedades son suficientes para identificar el funcional que asigna a cada juego su valor.
In this paper we present the extraproximal method for computing the Stackelberg/Nash equilibria in a class of ergodic controlled finite Markov chains games. We exemplify the original game formulation in terms of coupled nonlinear programming problems implementing the Lagrange principle. In addition, Tikhonov's regularization method is employed to ensure the convergence of the cost-functions to a Stackelberg/Nash equilibrium point. Then, we transform the problem into a system of equations in the...
This paper studies Markov stopping games with two players on a denumerable state space. At each decision time player II has two actions: to stop the game paying a terminal reward to player I, or to let the system to continue it evolution. In this latter case, player I selects an action affecting the transitions and charges a running reward to player II. The performance of each pair of strategies is measured by the risk-sensitive total expected reward of player I. Under mild continuity and compactness...
We consider a two-player zero-sum-game in a bounded open domain Ω described as follows: at a point x ∈ Ω, Players I and II play an ε-step tug-of-war game with probability α, and with probability β (α + β = 1), a random point in the ball of radius ε centered at x is chosen. Once the game position reaches the boundary, Player II pays Player I the amount given by a fixed payoff function F. We give a detailed proof of the fact that...
We consider a two-player zero-sum-game in a bounded open domain Ω described as follows: at a point x ∈ Ω, Players I and II play an ε-step tug-of-war game with probability α, and with probability β (α + β = 1), a random point in the ball of radius ε centered at x is chosen. Once the game position reaches the boundary, Player II pays Player I the amount given by a fixed payoff function F. We give a detailed proof of the fact that the value functions of this game satisfy the Dynamic Programming Principle...
We consider a two-player zero-sum-game in a bounded open domain Ω described as follows: at a point x ∈ Ω, Players I and II play an ε-step tug-of-war game with probability α, and with probability β (α + β = 1), a random point in the ball of radius ε centered at x is chosen. Once the game position reaches the boundary, Player II pays Player I the amount given by a fixed payoff function F. We give a detailed proof of the fact that...
This work deals with a class of discrete-time zero-sum Markov games whose state process evolves according to the equation where and represent the actions of player 1 and 2, respectively, and is a sequence of independent and identically distributed random variables with unknown distribution . Assuming possibly unbounded payoff, and using the empirical distribution to estimate , we introduce approximation schemes for the value of the game as well as for optimal strategies considering both,...
This paper deals with two-person stochastic games of resource extraction under both the discounted and the mean payoff criterion. Under some concavity and additivity assumptions concerning the payoff and the transition probability function a stationary Nash equilibrium is shown to exist. The proof is based on Schauder-Tychonoff's fixed point theorem, applied to a suitable payoff vector space.
Payoffs in (bimatrix) games are usually not known precisely, but it is often possible to determine lower and upper bounds on payoffs. Such interval valued bimatrix games are considered in this paper. There are many questions arising in this context. First, we discuss the problem of existence of an equilibrium being common for all instances of interval values. We show that this property is equivalent to solvability of a certain linear mixed integer system of equations and inequalities. Second, we...
El objeto de este trabajo es analizar los juegos estocásticos cuyo espacio de estados y de acciones son métricos compactos, con adecuadas condiciones de continuidad acerca de las funciones de pago y de transición. Tras describir el modelo e introducir las hipótesis de continuidad, se trata el problema con horizonte finito, a fin de probar que existe valor y estrategias óptimas para ambos jugadores, que puedan ser determinados recurrentemente. También se considera el caso de horizonte infinito en...
This work is concerned with discrete-time zero-sum games with Markov transitions on a denumerable space. At each decision time player II can stop the system paying a terminal reward to player I, or can let the system to continue its evolution. If the system is not halted, player I selects an action which affects the transitions and receives a running reward from player II. Assuming the existence of an absorbing state which is accessible from any other state, the performance of a pair of decision...
In this paper we introduce a new modeling paradigm for shortest path games representation with Petri nets. Whereas previous works have restricted attention to tracking the net using Bellman's equation as a utility function, this work uses a Lyapunov-like function. In this sense, we change the traditional cost function by a trajectory-tracking function which is also an optimal cost-to-target function. This makes a significant difference in the conceptualization of the problem domain, allowing the...
This work concerns a class of discrete-time, zero-sum games with two players and Markov transitions on a denumerable space. At each decision time player II can stop the system paying a terminal reward to player I and, if the system is no halted, player I selects an action to drive the system and receives a running reward from player II. Measuring the performance of a pair of decision strategies by the total expected discounted reward, under standard continuity-compactness conditions it is shown...
In this paper, we investigate Nash equilibrium payoffs for nonzero-sum stochastic differential games with reflection. We obtain an existence theorem and a characterization theorem of Nash equilibrium payoffs for nonzero-sum stochastic differential games with nonlinear cost functionals defined by doubly controlled reflected backward stochastic differential equations.