Weakly coercive mappings sharing a value
Czechoslovak Mathematical Journal (2011)
- Volume: 61, Issue: 1, page 65-72
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topSoriano, J. M.. "Weakly coercive mappings sharing a value." Czechoslovak Mathematical Journal 61.1 (2011): 65-72. <http://eudml.org/doc/196357>.
@article{Soriano2011,
abstract = {Some sufficient conditions are provided that guarantee that the difference of a compact mapping and a proper mapping defined between any two Banach spaces over $\mathbb \{K\}$ has at least one zero. When conditions are strengthened, this difference has at most a finite number of zeros throughout the entire space. The proof of the result is constructive and is based upon a continuation method.},
author = {Soriano, J. M.},
journal = {Czechoslovak Mathematical Journal},
keywords = {zero point; continuation method; $C^\{1\}$-homotopy; surjerctive implicit function theorem; proper mapping; compact mapping; coercive mapping; Fredholm mapping; zero point; continuation method; -homotopy; surjective implicit function theorem; proper mapping; compact mapping; coercive mapping; Fredholm mapping},
language = {eng},
number = {1},
pages = {65-72},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Weakly coercive mappings sharing a value},
url = {http://eudml.org/doc/196357},
volume = {61},
year = {2011},
}
TY - JOUR
AU - Soriano, J. M.
TI - Weakly coercive mappings sharing a value
JO - Czechoslovak Mathematical Journal
PY - 2011
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 61
IS - 1
SP - 65
EP - 72
AB - Some sufficient conditions are provided that guarantee that the difference of a compact mapping and a proper mapping defined between any two Banach spaces over $\mathbb {K}$ has at least one zero. When conditions are strengthened, this difference has at most a finite number of zeros throughout the entire space. The proof of the result is constructive and is based upon a continuation method.
LA - eng
KW - zero point; continuation method; $C^{1}$-homotopy; surjerctive implicit function theorem; proper mapping; compact mapping; coercive mapping; Fredholm mapping; zero point; continuation method; -homotopy; surjective implicit function theorem; proper mapping; compact mapping; coercive mapping; Fredholm mapping
UR - http://eudml.org/doc/196357
ER -
References
top- Allgower, E. L., A survey of homotopy methods for smooth mappings, Allgower, Glashoff, and Peitgen (eds.) Springer-Verlag, Berlin (1981), 2-29. (1981) Zbl0461.65037MR0644324
- Allgower, E. L., Glashoff, K., (eds.), H. Peitgen, Proceedings of the Conference on Numerical Solution of Nonlinear Equations, Bremen, July 1980, Lecture Notes in Math. 878. Springer-Verlag, Berlin (1981). (1981) MR0644323
- Allgower, E. L., Georg, K., Numerical Continuation Methods, Springer Series in Computational Mathematics 13, Springer-Verlag, New York (1990). (1990) Zbl0717.65030MR1059455
- Alexander, J. C., York, J. A., 10.1090/S0002-9947-1978-0478138-5, Trans. Amer. Math. Soc. 242 (1978), 271-284. (1978) MR0478138DOI10.1090/S0002-9947-1978-0478138-5
- Garcia, C. B., Li, T. I., 10.1137/0717046, SIAM J. Numer. Anal. 17 (1980), 540-546. (1980) MR0584729DOI10.1137/0717046
- Garcia, C. B., Zangwill, W. I., 10.1287/moor.4.1.1, Math. Operations Research 4 (1979), 1-14. (1979) MR0543605DOI10.1287/moor.4.1.1
- Soriano, J. M., 10.1016/0096-3003(93)90022-7, Appl. Math. Comput. 55 (1993), 213-218. (1993) Zbl0778.65046MR1213056DOI10.1016/0096-3003(93)90022-7
- Soriano, J. M., 10.1016/j.na.2008.08.015, Nonlinear Anal. Theory Methods Appl. 70 (2009), 4118-4121. (2009) Zbl1176.58005MR2515328DOI10.1016/j.na.2008.08.015
- Zeidler, E., Nonlinear Functional Analysis and its applications I, Springer-Verlag, New York (1992). (1992) MR0816732
- Zeidler, E., 10.1007/978-1-4612-0821-1_3, Springer-Verlag, Applied Mathematical Sciences 109, New York (1995). (1995) Zbl0834.46002MR1347691DOI10.1007/978-1-4612-0821-1_3
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.