A simple regularization method for the ill-posed evolution equation
Nguyen Huy Tuan; Dang Duc Trong
Czechoslovak Mathematical Journal (2011)
- Volume: 61, Issue: 1, page 85-95
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topTuan, Nguyen Huy, and Trong, Dang Duc. "A simple regularization method for the ill-posed evolution equation." Czechoslovak Mathematical Journal 61.1 (2011): 85-95. <http://eudml.org/doc/196363>.
@article{Tuan2011,
abstract = {The nonhomogeneous backward Cauchy problem \[u\_t +Au(t) = f(t),\quad u(T) = \varphi \]
, where $A$ is a positive self-adjoint unbounded operator which has continuous spectrum and $f$ is a given function being given is regularized by the well-posed problem. New error estimates of the regularized solution are obtained. This work extends earlier results by N. Boussetila and by M. Denche and S. Djezzar.},
author = {Tuan, Nguyen Huy, Trong, Dang Duc},
journal = {Czechoslovak Mathematical Journal},
keywords = {nonlinear parabolic problem; backward problem; semigroup of operators; ill-posed problem; contraction principle; nonlinear parabolic problem; backward problem; semigroup of operators; ill-posed problem; contraction principle},
language = {eng},
number = {1},
pages = {85-95},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A simple regularization method for the ill-posed evolution equation},
url = {http://eudml.org/doc/196363},
volume = {61},
year = {2011},
}
TY - JOUR
AU - Tuan, Nguyen Huy
AU - Trong, Dang Duc
TI - A simple regularization method for the ill-posed evolution equation
JO - Czechoslovak Mathematical Journal
PY - 2011
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 61
IS - 1
SP - 85
EP - 95
AB - The nonhomogeneous backward Cauchy problem \[u_t +Au(t) = f(t),\quad u(T) = \varphi \]
, where $A$ is a positive self-adjoint unbounded operator which has continuous spectrum and $f$ is a given function being given is regularized by the well-posed problem. New error estimates of the regularized solution are obtained. This work extends earlier results by N. Boussetila and by M. Denche and S. Djezzar.
LA - eng
KW - nonlinear parabolic problem; backward problem; semigroup of operators; ill-posed problem; contraction principle; nonlinear parabolic problem; backward problem; semigroup of operators; ill-posed problem; contraction principle
UR - http://eudml.org/doc/196363
ER -
References
top- Ames, K. A., Hughes, R. J., 10.1007/s00233-004-0153-x, Semigroup Forum 70 (2005), 127-145. (2005) Zbl1109.34041MR2107199DOI10.1007/s00233-004-0153-x
- Boussetila, N., Rebbani, F., Optimal regularization method for ill-posed Cauchy problems, Electron. J. Differ. Equ. 147 (2006), 1-15. (2006) Zbl1112.35336MR2276572
- Clark, G. W., Oppenheimer, S. F., Quasireversibility methods for non-well posed problems, Electron. J. Diff. Eqns. 1994 (1994), 1-9. (1994) Zbl0811.35157MR1302574
- Denche, M., Bessila, K., 10.1016/j.jmaa.2004.08.001, J. Math. Anal. Appl. 301 (2005), 419-426. (2005) Zbl1084.34536MR2105682DOI10.1016/j.jmaa.2004.08.001
- Denche, M., Djezzar, S., A modified quasi-boundary value method for a class of abstract parabolic ill-posed problems, Bound. Value Probl. 2006, Article ID 37524 (2006), 1-8. (2006) Zbl1140.34397MR2211398
- Eldén, L., Berntsson, F., Reginska, T., 10.1137/S1064827597331394, SIAM J. Sci. Comput. 21 (2000), 2187-2205. (2000) MR1762037DOI10.1137/S1064827597331394
- Fu, C.-L., Xiong, X.-T., Fu, P., 10.1016/j.mcm.2005.08.003, Math. Comput. Modelling 42 (2005), 489-498. (2005) Zbl1122.80016MR2173470DOI10.1016/j.mcm.2005.08.003
- Fu, C.-L., 10.1016/j.cam.2003.10.011, J. Comput. Appl. Math. 167 (2004), 449-463. (2004) Zbl1055.65106MR2064702DOI10.1016/j.cam.2003.10.011
- Fu, C.-L., Xiang, X.-T., Qian, Z., 10.1016/j.jmaa.2006.08.040, J. Math. Anal. Appl. 331 (2007), 472-480. (2007) MR2306017DOI10.1016/j.jmaa.2006.08.040
- Gajewski, H., Zaccharias, K., 10.1016/0022-247X(72)90083-2, J. Math. Anal. Appl. 38 (1972), 784-789. (1972) MR0308625DOI10.1016/0022-247X(72)90083-2
- Hào, D. N., Duc, N. Van, Sahli, H., 10.1016/j.jmaa.2008.04.064, J. Math. Anal. Appl. 345 (2008), 805-815. (2008) MR2429181DOI10.1016/j.jmaa.2008.04.064
- Huang, Y., Zheng, Q., 10.1090/S0002-9939-05-07822-6, Proc. Am. Math. Soc. 133 (2005), 3005-3012. (2005) Zbl1073.47016MR2159779DOI10.1090/S0002-9939-05-07822-6
- Lattès, R., Lions, J.-L., Méthode de Quasi-réversibilité et Applications, Dunod Paris (1967), French. (1967) MR0232549
- Long, N. T., Ding, A. Pham Ngoc, Approximation of a parabolic nonlinear evolution equation backwards in time, Inverse Probl. 10 (1994), 905-914. (1994) MR1286629
- Mel'nikova, I. V., Filinkov, A. I., Abstract Cauchy problems: Three approaches. Monograph and Surveys in Pure and Applied Mathematics, Vol. 120, Chapman & Hall/CRC London-New York/Boca Raton (2001). (2001) MR1823612
- Miller, K., 10.1007/BFb0069627, Lect. Notes Math. Vol. 316 Springer Berlin (1973), 161-176. (1973) MR0393903DOI10.1007/BFb0069627
- Payne, L. E., Improperly Posed Problems in Partial Differential Equations, SIAM Philadelphia (1975). (1975) Zbl0302.35003MR0463736
- Pazy, A., Semigroups of Linear Operators and Application to Partial Differential Equations, Springer New York (1983). (1983) MR0710486
- Showalter, R. E., 10.1016/0022-247X(74)90008-0, J. Math. Anal. Appl. 47 (1974), 563-572. (1974) Zbl0296.34059MR0352644DOI10.1016/0022-247X(74)90008-0
- Showalter, R. E., Quasi-reversibility of first and second order parabolic evolution equations. Improp. Posed Bound. Value Probl. (Conf. Albuquerque, 1974), Res. Notes in Math., No. 1 Pitman London (1975), 76-84. (1975) MR0477359
- Tautenhahn, U., Schröter, T., 10.4171/ZAA/711, Z. Anal. Anwend. 15 (1996), 475-493. (1996) MR1394439DOI10.4171/ZAA/711
- Tautenhahn, U., 10.1080/01630569808816834, Numer. Funct. Anal. Optimization 19 (1998), 377-398. (1998) Zbl0907.65049MR1624930DOI10.1080/01630569808816834
- Trong, D. D., Tuan, N. H., Stabilized quasi-reversibility method for a class of nonlinear ill-posed problems, Electron. J. Differ. Equ. No 84 (2008). (2008) Zbl1171.35485MR2411080
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.