A simple regularization method for the ill-posed evolution equation

Nguyen Huy Tuan; Dang Duc Trong

Czechoslovak Mathematical Journal (2011)

  • Volume: 61, Issue: 1, page 85-95
  • ISSN: 0011-4642

Abstract

top
The nonhomogeneous backward Cauchy problem u t + A u ( t ) = f ( t ) , u ( T ) = ϕ , where A is a positive self-adjoint unbounded operator which has continuous spectrum and f is a given function being given is regularized by the well-posed problem. New error estimates of the regularized solution are obtained. This work extends earlier results by N. Boussetila and by M. Denche and S. Djezzar.

How to cite

top

Tuan, Nguyen Huy, and Trong, Dang Duc. "A simple regularization method for the ill-posed evolution equation." Czechoslovak Mathematical Journal 61.1 (2011): 85-95. <http://eudml.org/doc/196363>.

@article{Tuan2011,
abstract = {The nonhomogeneous backward Cauchy problem \[u\_t +Au(t) = f(t),\quad u(T) = \varphi \] , where $A$ is a positive self-adjoint unbounded operator which has continuous spectrum and $f$ is a given function being given is regularized by the well-posed problem. New error estimates of the regularized solution are obtained. This work extends earlier results by N. Boussetila and by M. Denche and S. Djezzar.},
author = {Tuan, Nguyen Huy, Trong, Dang Duc},
journal = {Czechoslovak Mathematical Journal},
keywords = {nonlinear parabolic problem; backward problem; semigroup of operators; ill-posed problem; contraction principle; nonlinear parabolic problem; backward problem; semigroup of operators; ill-posed problem; contraction principle},
language = {eng},
number = {1},
pages = {85-95},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A simple regularization method for the ill-posed evolution equation},
url = {http://eudml.org/doc/196363},
volume = {61},
year = {2011},
}

TY - JOUR
AU - Tuan, Nguyen Huy
AU - Trong, Dang Duc
TI - A simple regularization method for the ill-posed evolution equation
JO - Czechoslovak Mathematical Journal
PY - 2011
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 61
IS - 1
SP - 85
EP - 95
AB - The nonhomogeneous backward Cauchy problem \[u_t +Au(t) = f(t),\quad u(T) = \varphi \] , where $A$ is a positive self-adjoint unbounded operator which has continuous spectrum and $f$ is a given function being given is regularized by the well-posed problem. New error estimates of the regularized solution are obtained. This work extends earlier results by N. Boussetila and by M. Denche and S. Djezzar.
LA - eng
KW - nonlinear parabolic problem; backward problem; semigroup of operators; ill-posed problem; contraction principle; nonlinear parabolic problem; backward problem; semigroup of operators; ill-posed problem; contraction principle
UR - http://eudml.org/doc/196363
ER -

References

top
  1. Ames, K. A., Hughes, R. J., 10.1007/s00233-004-0153-x, Semigroup Forum 70 (2005), 127-145. (2005) Zbl1109.34041MR2107199DOI10.1007/s00233-004-0153-x
  2. Boussetila, N., Rebbani, F., Optimal regularization method for ill-posed Cauchy problems, Electron. J. Differ. Equ. 147 (2006), 1-15. (2006) Zbl1112.35336MR2276572
  3. Clark, G. W., Oppenheimer, S. F., Quasireversibility methods for non-well posed problems, Electron. J. Diff. Eqns. 1994 (1994), 1-9. (1994) Zbl0811.35157MR1302574
  4. Denche, M., Bessila, K., 10.1016/j.jmaa.2004.08.001, J. Math. Anal. Appl. 301 (2005), 419-426. (2005) Zbl1084.34536MR2105682DOI10.1016/j.jmaa.2004.08.001
  5. Denche, M., Djezzar, S., A modified quasi-boundary value method for a class of abstract parabolic ill-posed problems, Bound. Value Probl. 2006, Article ID 37524 (2006), 1-8. (2006) Zbl1140.34397MR2211398
  6. Eldén, L., Berntsson, F., Reginska, T., 10.1137/S1064827597331394, SIAM J. Sci. Comput. 21 (2000), 2187-2205. (2000) MR1762037DOI10.1137/S1064827597331394
  7. Fu, C.-L., Xiong, X.-T., Fu, P., 10.1016/j.mcm.2005.08.003, Math. Comput. Modelling 42 (2005), 489-498. (2005) Zbl1122.80016MR2173470DOI10.1016/j.mcm.2005.08.003
  8. Fu, C.-L., 10.1016/j.cam.2003.10.011, J. Comput. Appl. Math. 167 (2004), 449-463. (2004) Zbl1055.65106MR2064702DOI10.1016/j.cam.2003.10.011
  9. Fu, C.-L., Xiang, X.-T., Qian, Z., 10.1016/j.jmaa.2006.08.040, J. Math. Anal. Appl. 331 (2007), 472-480. (2007) MR2306017DOI10.1016/j.jmaa.2006.08.040
  10. Gajewski, H., Zaccharias, K., 10.1016/0022-247X(72)90083-2, J. Math. Anal. Appl. 38 (1972), 784-789. (1972) MR0308625DOI10.1016/0022-247X(72)90083-2
  11. Hào, D. N., Duc, N. Van, Sahli, H., 10.1016/j.jmaa.2008.04.064, J. Math. Anal. Appl. 345 (2008), 805-815. (2008) MR2429181DOI10.1016/j.jmaa.2008.04.064
  12. Huang, Y., Zheng, Q., 10.1090/S0002-9939-05-07822-6, Proc. Am. Math. Soc. 133 (2005), 3005-3012. (2005) Zbl1073.47016MR2159779DOI10.1090/S0002-9939-05-07822-6
  13. Lattès, R., Lions, J.-L., Méthode de Quasi-réversibilité et Applications, Dunod Paris (1967), French. (1967) MR0232549
  14. Long, N. T., Ding, A. Pham Ngoc, Approximation of a parabolic nonlinear evolution equation backwards in time, Inverse Probl. 10 (1994), 905-914. (1994) MR1286629
  15. Mel'nikova, I. V., Filinkov, A. I., Abstract Cauchy problems: Three approaches. Monograph and Surveys in Pure and Applied Mathematics, Vol. 120, Chapman &amp; Hall/CRC London-New York/Boca Raton (2001). (2001) MR1823612
  16. Miller, K., 10.1007/BFb0069627, Lect. Notes Math. Vol. 316 Springer Berlin (1973), 161-176. (1973) MR0393903DOI10.1007/BFb0069627
  17. Payne, L. E., Improperly Posed Problems in Partial Differential Equations, SIAM Philadelphia (1975). (1975) Zbl0302.35003MR0463736
  18. Pazy, A., Semigroups of Linear Operators and Application to Partial Differential Equations, Springer New York (1983). (1983) MR0710486
  19. Showalter, R. E., 10.1016/0022-247X(74)90008-0, J. Math. Anal. Appl. 47 (1974), 563-572. (1974) Zbl0296.34059MR0352644DOI10.1016/0022-247X(74)90008-0
  20. Showalter, R. E., Quasi-reversibility of first and second order parabolic evolution equations. Improp. Posed Bound. Value Probl. (Conf. Albuquerque, 1974), Res. Notes in Math., No. 1 Pitman London (1975), 76-84. (1975) MR0477359
  21. Tautenhahn, U., Schröter, T., 10.4171/ZAA/711, Z. Anal. Anwend. 15 (1996), 475-493. (1996) MR1394439DOI10.4171/ZAA/711
  22. Tautenhahn, U., 10.1080/01630569808816834, Numer. Funct. Anal. Optimization 19 (1998), 377-398. (1998) Zbl0907.65049MR1624930DOI10.1080/01630569808816834
  23. Trong, D. D., Tuan, N. H., Stabilized quasi-reversibility method for a class of nonlinear ill-posed problems, Electron. J. Differ. Equ. No 84 (2008). (2008) Zbl1171.35485MR2411080

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.